首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2020-03-01
53
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
一η
2
,η
2
+η
3
,η
3
一η
4
,η
4
+η
1
。
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
一η
2
+η
3
。
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
。
D、η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
。
答案
D
解析
方法一:由已知条件知AX=0的基础解系由四个线性无关的解向量所构成。选项B中仅三个解向量,个数不合要求,故排除B项。
选项A和C中,都有四个解向量,但因为
(η
1
一η
2
)+(η
2
+η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
+η
4
)一(η
4
+η
1
)=0,
说明选项A、C中的解向量组均线性相关,因而排除A项和C项。故选D。
方法二:由
(η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
因为
知η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4。故选D。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/LNA4777K
0
考研数学二
相关试题推荐
下列极限中结果等于e的是[].
=()
设=2,其中a2+c2≠0,则必有()
设f(χ)是不恒为零的奇函数,且f′(0)存在,则g(χ)=().
非齐次线性方程组AX=b中未知量个数为n,方程个数为优,系数矩阵A的秩为r,则().
已知A是四阶矩阵,A*是A的伴随矩阵,若A*的特征值是1,一1,2,4,那么不可逆矩阵是()
的定义域是[].
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令其中选常数C0,使得F(x)在x=c处连续.就下列情形回答F(x)是否是f(x)在(a,b)的原
随机试题
一般在满足油井产能要求时,应采取()、长冲程、慢冲次的原则。
人在摄取混合食物时,其呼吸商通常为
悬空式桥体龈面与牙槽嵴顶黏膜的距离至少是
劳动争议案件中存在劳动关系的用人单位与职工称为()。
( )经常会使用“矛盾处方”、“维持症状”、“奇迹提问”等方法作为解决问题的焦点。
年营业收入1000万,直接经营成本400万,折旧50万,税率33%,求企业经营性现金流量净额。()
GlobalWarmingControversyVocabularyandExpressionscontroversyemissionsnon-committalprojectionscur
Chinesepeopleareusuallydescribedashospitable,generousandamiable.Theunderlinedpartmeans______.
Volunteersareourheartandsoul.Pleasecomeandhelpusbuildhomesfor【B1】______low-incomefamilies.Thereisnoexperience
A、It’smoreconvenienttomakechangeswhenusingacomputer.B、Acomputeruseslesspaper.C、It’slessexpensivetousethecom
最新回复
(
0
)