首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y’’一(2x+1)y’+2y=0的两个解,若u(—1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y’’一(2x+1)y’+2y=0的两个解,若u(—1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
admin
2019-02-26
61
问题
已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x一1)y’’一(2x+1)y’+2y=0的两个解,若u(—1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
选项
答案
计算得y’
2
(x)=[u’(x)+u(x)]e
x
,y’’
2
(x)=[u’’(x)+2u’(x)+u(x)]e
x
, 将y
2
(x)=u(x)e
x
代入方程(2x-1)y’’一(2x+1)y’+2y=0有 (2x一1)u’’(x)+(2x一3)u’(x)=0, [*] 两边积分lnu’(x)=一x+ln(2x一1)+lnC
1
, 即 u’(x)=C
1
(2x—1)e
-x
. 故 u(x)=一C
1
(2x+1)e
-x
+C
2
由条件u(一1)=e,u(0)=一1,得C
1
=1,C
2
=0,即u(x)=一(2x+1)e
-x
. y
1
(x),y
2
(x)是二阶微分方程(2x一1)y’’一(2x+1)y’+2y=0的两个线性无关的解,所以通解为y(x)=C
1
e+C
2
(2x+1).
解析
根据已知的关系式,变形得到关于u(x)的微分方程,解微分方程求得u(x).
转载请注明原文地址:https://kaotiyun.com/show/MG04777K
0
考研数学一
相关试题推荐
设随机变量X服从参数为λ的指数分布,令Y=求:(I)P{X+Y=0}:(Ⅱ)随机变量Y的分布函数;(Ⅲ)E(Y).
设已知AX=B有解.(I)求常数a,b的值.(Ⅱ)求X.
a,b取何值时,方程组有唯一解、无解、有无穷多个解?有无穷多个解时,求出其通解.
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明:(I)存在ξ∈(a,b),使得∫aξf(x)dx=0;(Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
假设目标出现在射程之内的概率为0.7,这时一次射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率.
已知函数y=,试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
讨论下列函数的连续性并判断间断点的类型:
随机试题
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
人生代代无穷已,________。
中药制剂的常用浸出方法有煎煮法、浸渍法、渗漉法和蒸馏法。()
A、原植物属于兰科B、原植物属于天南星科C、原植物属于伞形科D、原植物属于百合科E、原植物属于蓼科天麻()
甲公司承租了一栋建筑面积为10000m2的旧商业大楼,承租期为20年,前3年租金保持不变,每年为600元/m2,以后每年递增3%。该公司用1年时间,将该商业大楼装修改造成共有400个摊位的专业市场,装修改造费用共1000万元。装修改造完成后,公司计划将摊位
下列关于保修义务的承担和维修的经济责任承担应当遵循的处理原则的说法中,正确的有()。
保护贸易政策
行政复议决定书一经送达,即发生法律效力。()
SPEC计算机性能测试有不同的方法,吞吐率测试是指对(6)的测试。
为使以下程序段不陷入死循环,从键盘输入的数据应该是()。intn,t=1,s=0;scanf(’’%dt’’,&n);do{s=s++;t=t一2;}while(t!=n);
最新回复
(
0
)