首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1) T十k1 (1,0,2,1) T+k2 (2,1,1,—1) T. 令B=(α1,α2,α3),求Bx=6的通解;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1) T十k1 (1,0,2,1) T+k2 (2,1,1,—1) T. 令B=(α1,α2,α3),求Bx=6的通解;
admin
2019-08-26
37
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
十k
1
(1,0,2,1)
T
+k
2
(2,1,1,—1)
T
.
令B=(α
1
,α
2
,α
3
),求Bx=6的通解;
选项
答案
先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可知:Ax=0的基础解系中含有两个向量,故4—R(A)=2,即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解,可得α
1
十2α
3
+α
4
=0,故α
4
=—α
1
—2α
3
.可知α
4
能由α
1
,α
2
,α
3
线性表示,故 R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),即R(B)=2. 因此,Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,—1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,l,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可. 为此,令(1,1,l,1)
T
十k
1
(1,0,2,1)
T
+k
2
(2,1,l,—1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b的一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R
解析
转载请注明原文地址:https://kaotiyun.com/show/MSJ4777K
0
考研数学三
相关试题推荐
设A-1=,求(A*)-1.
求齐次方程组的基础解系.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
已知随机变量(X,Y)的联合概率密度为求(X,Y)的联合分布函数.
(2008年)设函数f(x)在区间[一1,1]上连续,则x=0是函数的()
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则()
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
随机试题
卫生部1989年12月发布的医院分级管理试行草案有以下要求,但除外
自动排放管道中的凝结水,并防止蒸汽泄漏的阀门是()。
在单元格中的段落标记或文字左边单击,可以选取()。
甲、乙两人同时加工同样多的零件,甲每小时加工40个。当甲完成任务的时,乙距离完成任务的还差40个,这时乙开始提高工作效率,又用了7.5小时完成了全部加工任务。这时甲还剩下20个零件没完成。乙提高工效后,每小时加工零件多少个?
计算
设f(x)在[a,b](0<a<b)上连续,在(a,b)内可导,则在(a,b)内存在ξ,η,使
Ayoungconsultant’slifeistiring.A【C1】______weekstartsbeforedawnonMonday,witharushtotheairportanda【C2】______to
有以下程序:#include<stdio.h>#include<string.h>#includevoidf(char*s,char*t){chark;k=*s;*s=*t;*t=k;s+
下述有关选项组叙述正确的是______.
一天晚上,一群游牧部落的牧民正准备安营扎寨休息,忽然被一束耀眼的光芒所笼罩。他们知道神就要出现了。因此,他们殷切地期盼着,恭候着来自上苍的重要旨意。最后,神终于说话了:“你们要沿路多捡一些鹅卵石,把它们放在你们的马褡子里。明天晚上,你们会非常快乐
最新回复
(
0
)