首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求矩阵B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求矩阵B的全部特征值与特征向量;
admin
2019-02-23
64
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求矩阵B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值一2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为[*],故可取[*]。 B的全部特征向量为[*],其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/Mij4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
设抛物线y=ax2+bx+c(a<0)满足:(1)过点(0,O)及(1,2);(2)抛物线y=ax2+bx+c与抛物线y=-x2+2x所围图形的面积最小,求a,b,c的值.
设f(x)在(-∞,+∞)上是导数连续的有界函数,|f(x)-f’(x)|≤1,证明:|f(x)|≤1.
证明:,其中a>0为常数.
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
求下列极限:
设函数f(χ)在(-∞,+∞)内满足f(χ)=f(χ-π)+sinχ,且f(χ)=χ,χ∈[0,π),求∫π3πf(χ)dχ.
求一块铅直平板如图3.1所示在某种液体(比重为γ)中所受的压力.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
随机试题
在病例对照研究中,变量的的测量应尽可能的采用
下列关于牙颌面畸形的叙述哪项是错误的()
下图为深圳万科城市花园住宅组团,其设计采用的布置方法是:
机构如图,杆ED的点H由水平绳拉住,其上的销钉C置于杆AB的光滑直槽中,各杆重均不计。已知FP=10kN。销钉C处约束力的作用线与x轴正向所成的夹角为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
莎士比亚戏剧中体现的很多观点、态度和思想——莎士比亚本人是否赞同有待探究,但放在今天无论如何是难以接受的。其中确有赤裸裸的政治不正确之处,弄得一些改编作品简直就像在讨伐莎士比亚。不过,这些貌似不敬的行为反倒是帮了莎士比亚的大忙。因为这些莎士比亚原作的衍生作
决策支持系统通过它的输出接口产生报告、数据库查询结果和模型的模拟结果,这些结果又提供了对决策过程中哪项的支持?
在美国国防部的可信任计算机标准评估准则中,安全等级最高的是()。
下列关于IPS的描述中,正确的是()。
Wehavetoaskthemtoquittalkinginorderthatallpeoplepresentcouldhearusclearly.
最新回复
(
0
)