首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,存在极限证明: (Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
设f(x)在(-∞,+∞)连续,存在极限证明: (Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
admin
2018-06-27
72
问题
设f(x)在(-∞,+∞)连续,存在极限
证明:
(Ⅰ)设A<B,则对
∈(A,B),
∈(-∞,+∞),使得f(ξ)=μ;
(Ⅱ)f(x)在(-∞,+∞)有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]f(x)=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]f(x)=B>μ可知,[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,f(X
1
)<μ<f(X
2
),由连续函数介值定理知[*]∈(X
1
,X
2
)[*](-∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*],由存在极限的函数的局部有界性定理可知,[*]X
1
使得当∈(-∞,X
1
)时f(x)有界;[*]X
2
(>X
1
)使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(-∞,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nlk4777K
0
考研数学二
相关试题推荐
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y),则等于
设,A*是A的伴随矩阵,则(A*)-1=_______.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求D绕y轴旋转一周所得旋转体体积V.
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设三阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为求Anβ(n为自然数).
将函数arctanx一x展开成x的幂级数.
设两曲线y=f(x)与y=∫0arctanx在点(0,0)处有相同的切线,则=________
随机试题
下列哪项不是慢性盆腔炎的常见证型
甲亢病人浸润性突眼下列描述中哪项不妥
土地法律制度的核心内容是()。
横道图法是分析建设工程项目施工成本偏差的常用方法,其特点包括()。
红霞公司为增值税一般纳税人,适用增值税税率为17%,该公司2014年8月初的资产总额为1560000元,负债总额为936000元。8月份发生的交易或事项如下:(1)采购生产用原材料一批,取得的增值税专用发票注明买价为203295元,增值税为
现在所说的“导游”概念,下面表述正确的是()。
尽管近年来我国引进不少人才,但真正顶尖的领军人才还是凤毛麟角。就全球而言,人才特别是高层次人才紧缺已呈常态化、长期化趋势。某专家由此认为,未来10年,美国、加拿大、德国等主要发达国家对高层次人才的争夺将进一步加剧,而发展中国家的高层次人才紧缺状况更甚于发达
Manyyoungpeoplegotouniversitywithoutclearideaofwhattheyaregoingtodoafterwards.Ifastudentgoestoauniversity
10GbpsEthernet采用的标准是IEEE()。
Hecamebacklate,______whichtimealltheguestshadalreadyleft.
最新回复
(
0
)