首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
admin
2019-04-08
46
问题
[2008年]设n元线性方程组AX=b,其中
当a为何值时,该方程组有无穷多解,并求通解.
选项
答案
当(n+1)a
n
=0即a=0时,此时增广矩阵[*]和系数矩阵的秩均为n一1<n,故方程组有无穷多组解,且 [*] 可见[*]是含最高阶单位矩阵的矩阵.因n一秩(A)=1,故对应的齐次方程组的基础解系只含一个解向量.由基础解系和特解的简便求法,基础解系和特解分别为 α=[1,0,0,…,0]
T
,η=[0,1,0,…,0]
T
, 故AX=b的通解为X=kα+η,k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/OD04777K
0
考研数学一
相关试题推荐
若三维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为______。
矩阵相似的充分必要条件为()
已知矩阵(Ⅰ)求A99;(Ⅱ)设三阶矩阵B=(α1,α2,α3)满足B2=BA。记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合。
设矩阵矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
已知齐次线性方程组同解,求a,b,c的值.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
随机试题
广提选择
某集团公司部分职代会代表向该公司职工代表大会就职工教育问题提交的相应文书,属()
把下面的句子翻译成现代汉语:洋洋乎与造物者游,而不知其所穷。
Shoppingforclothesisnotthe【C1】______experienceforamanasitisforawoman.Amangoesshoppingbecauseheneedssomethi
A.远距分泌B.旁分泌C.自分泌D.出胞内分泌细胞分泌激素的跨膜转运方式属于
某市甲县工商局认定某机电公司从乙县贸易公司购进的3辆进口汽车的准运证系伪造,作出没收3辆汽车和罚款20万元的处罚决定。县机电公司不服,向市工商局申请复议。市工商局认为县工商局的处罚过重,遂作出没收3辆汽车但不罚款的复议决定。机电公司仍不服,向法院起诉。下列
《中华人民共和国防沙治沙法》所称土地沙化,是指主要因()所导致的天然沙漠扩张和沙质土壤上植被及覆盖物被破坏,形成流沙及沙土裸露的过程。
临近桥台边缘处的桥台台背回填宜采用( )压实。
下列关于票据特征的表述中,正确的有()。
Themanthinksthemoviewasvery______.
最新回复
(
0
)