首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
admin
2019-04-08
47
问题
[2008年]设n元线性方程组AX=b,其中
当a为何值时,该方程组有无穷多解,并求通解.
选项
答案
当(n+1)a
n
=0即a=0时,此时增广矩阵[*]和系数矩阵的秩均为n一1<n,故方程组有无穷多组解,且 [*] 可见[*]是含最高阶单位矩阵的矩阵.因n一秩(A)=1,故对应的齐次方程组的基础解系只含一个解向量.由基础解系和特解的简便求法,基础解系和特解分别为 α=[1,0,0,…,0]
T
,η=[0,1,0,…,0]
T
, 故AX=b的通解为X=kα+η,k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/OD04777K
0
考研数学一
相关试题推荐
若三维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为______。
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵。若A有特征值λ,则(A*)2+E必有特征值______。
已知非齐次线性方程组有三个线性无关的解。(Ⅰ)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
已知齐次线性方程组同解,求a,b,c的值.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设a=(a1,a2,…an)T,a1≠0,A=aaT,(1)证明λ=0是A的n-1重特征值;(2)求A的非零特征值及n个线性无关的特征向量.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
已知齐次线性方程组=有非零解,且矩阵是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
随机试题
火焰矫正时,其温度范围一般在700~1000℃之间,如果温度过高,会引起钢材过热或过烧,当温度低于700℃时,容易产生热脆性。
坡口边缘未焊透在X射线底片上的特征是什么?
输血过程中下列何项不妥()。
A、 B、 C、 D、 C
治疗重度妊娠高血压综合征首选的药物是( )
下列机电工程测量仪器中,()的主要功能是用来测量标高和高程。
下列不属于世界贸易组织主要原则的是()。
下列各项中,不会影响流动比率的业务是()。
材料:庄严的科学殿堂其实是一座仅靠着几根“虚空支柱”撑持起来的“空中楼阁”。它很像北岳恒山的那座悬空寺——离地五十余米,唯见十几根碗口粗的木柱支撑,“上延霄客,下绝嚣浮”,嵌于万仞峭壁之中。全部科学体系仅仅依靠几条基本假设撑起。这些人为
A、 B、 C、 D、 A元素叠加。第一组图中叠加规律:白+黑=白,白+白=黑,黑+白=白。第二组图应也符合此规律。故本题选A。
最新回复
(
0
)