首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
admin
2017-10-25
87
问题
假设测量的随机误差X~N(0,10
2
),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e
-5
=0.007).
选项
答案
记事件A=“100次独立测量中至少有3次测量误差X的绝对值大于19.6”=“100次独立测量中,事件{|X|>19.6}至少发生3次”,依题意,所求α=P(A),如果记事件C={|X|>19.6},Y表示100次独立测量中事件C发生的次数,则事件A={Y≥3},Y~B(100,p),其中p=P(C). p=P(C)=P{|X|>19.6}=1—P{|X|≤19.6} =1一P{一19.6≤X≤19.6}=1一[*] =2[1一φ(1.96)]=2×0.025=0.05, 因此所求的概率 α=P(A)=P{Y≥3}=1一P{Y<3} =1—P{Y=0}一P{Y=1}一P{Y=2}, 其中P{Y=k}=C
100
k
P
k
(1一p)
100-k
=C
100
k
×0.05
k
×0.95
100-k
. 由于n=100充分大,p=0.05很小,np=100×0.05=5适中,显然满足泊松定理的条件,可认为Y近似服从参数为5的泊松分布,因此P{Y=k}≈[*]e
-λ
,其中λ=np=5,于是α≈1-e
-5
-5e
-5
-[*]e
-5
=1-18.5e
-5
=0.87.
解析
转载请注明原文地址:https://kaotiyun.com/show/OEX4777K
0
考研数学三
相关试题推荐
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).(1)求X,Y的联合密度函数;(2)求Y的边缘密度函数.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
设随机变量X服从参数为2的指数分布,令U=,求:(1)(U,V)的分布;(2)U,V的相关系数.
设总体X~F(x,θ)=,样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设(X,Y)的分布函数为:求:(1)常数A,B,C;(2)(X,Y)的密度;(3)关于X、Y的边缘密度。
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(I)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
随机试题
下列积分发散的是().
关于骨软骨瘤临床表现的叙述,正确的是
根据收集资料时具体方法的不同,可分为问卷访谈法和自填问卷法。在自填法中,最常用的是()。
漫肿无头,皮色不变,疫痛无热,口中不渴,舌淡苔白,脉沉细或迟细。方剂选用
证券公司受期货公司委托从事介绍业务,应当提供的服务包括()。
制定战略控制系统,需要考虑很多因素,其中包括竞争优势。为控制竞争优势这个目标,需要考虑的业务包括()。
《辽阔的草原》是蒙古族()歌曲。
《诗经》是我国第一部诗歌总集,相传由孔子编订而成。《诗经》分为风、雅、颂三部分,其中“风”包括了十五个地方的民歌,叫“十五国风”。孔子在编订《诗经》时不选赵国的诗歌的原因是()。
根据材料,所给回答下面问题注:恩格尔系数(食品支出占消费支出的比重)。
价格形态中出现最多的两种形态是()。
最新回复
(
0
)