首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
admin
2018-06-14
109
问题
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
选项
答案
由题设f(x)在x=a处n阶可导且[*]=A≠0知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而 f(a)=f’(a)=f"(a)=…=f
(n—1)
(a)=0,f
(n)
(a)=n!A≠0. 设g(x)=f’(x),由题设知g(x)在x=a处n一1阶可导,且 g(a)=f’(a)=0,g’(a)=f"(a)=0,…,g
(n—2)
(a)=f
(n—1)
(a)=0, g
(n—1)
(a)=f
(n)
(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n一1阶泰勒公式为 f’(x)=g(x)=g(a)+g’(a)(x一a)+…+[*](x一a)
n—2
+[*](x—a)
n—1
+ο(x一a)
n—1
=[*](x一a)
n—1
+ο((x一a)
n—1
=nA(x一a)
n—1
+ο((x一a)
n—1
), 故f’(x)当x→a时是x一a的n一1阶无穷小量.
解析
转载请注明原文地址:https://kaotiyun.com/show/P2W4777K
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:存在η∈(1,2),使得∫12(t)dt=ξ(ξ一1)f’(η)ln2.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=一f(ξ)cotξ.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
设A是n阶矩阵,λ=2是A的一个特征值,则2A2-3A+5E必有特征值______.
求与A=可交换的矩阵.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设随机事件A,B及A∪B的概率分别为0.4,0.3和0.6,则P(AB)=________.
已知事件A发生必导致B发生,且0<P(B)<1,则=
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为,设x表示途中遇到红灯的次数,则E(X)=________.
随机试题
用16×16点阵字库存储一个汉字的字形码,需要用()个字节。
精索首次出现的横断层面是
在统计分析中,相关系数r的取值范围为()。
常用油料都是制作涂料的成膜剂,何组属于干性油,具有快干的性能?[2000一054]
在下列关于采用砂井预压法处理软黏土地基的说法中,()是正确的。
《职业安全健康管理体系导则》(ILO-OSH2001)和《职业健康安全管理体系导则》(OHSAS18001)的运行模式均体现了()的思想。
下列属于外汇市场工具的是()。
下列属于公安指挥工作的是()。
曲线y=(x一1)(x一2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
A、Soil.B、Humanpopulation.C、Forest.D、Water.B细节题。文章一开始就指出Badfarmingmethodscandamagesoil,forestsandwatersupplies.(不良的
最新回复
(
0
)