首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换化为矩阵.B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换化为矩阵.B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2022-11-04
40
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换化为矩阵.B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
+β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/PTgD777K
0
考研数学三
相关试题推荐
什么是隐语?它在语言中有什么作用?
狭义的现代汉语是指以北京语音为标准音,以北方话为基础方言,以()为语法规范的普通话。
甲因出国工作,将自己的宠物犬寄养在朋友乙家。2015年5月2日,乙擅自决定将该犬卖给同事丙,乙、丙二人约定:宠物犬价格为5万元,2015年8月30日双方同时交付。丙为按时向乙付款,于2015年8月20日向丁借款3万元,以自己的一辆汽车抵押,双方签订了书面抵
顾某欲与同某离婚。下列情形中,顾某既可以之作为起诉离婚的理由,同时可请求损害赔偿的有
在一项实验中,实验对象的一半作为实验组,食用了大量的味精。而作为对照组的另一半没有吃这种味精。结果,实验组的认知能力比对照组差得多。这一不利的结果是由于这种味精的一种主要成分——谷氨酸造成的。以下哪项如果为真,则最有助于证明味精中某些成分造成这一实验结论?
小王说:如果明天不下大雨,我一定会去看足球比赛。以下哪项为真。可以证明小王没有说真话?Ⅰ.天没下大雨,小王没有去看足球赛。Ⅱ.天下大雨,小王去看了足球赛。Ⅲ.天下大雨,小王没去看足球赛。
微分方程y’-xe-y+1/x=0的通解为________.
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点共扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组Ax=0与BX=0有公共的非零解.
随机试题
某小区拟建建筑面积为10万m2的住宅,其中30%的建筑面积为一室一厅户型、70m2/户。40%的建筑面积为二室一厅户型、90m2/户,20%的建筑面积为三室二厅户型、120m2/户。10%的建筑面积为四室二厅户型、150m2/户,根据以上要求初步估算该小区
设平面π的方程为2x一2y+3=0,以下选项中错误的是()。
多层住宅的基本特点不包括()。
毛泽东在井冈山斗争期间提出的“工农武装割据”思想包括()。
一般情况:小王,男,23岁,大四学生。生于一个小城镇,生长发育正常,身体健康,性格孤僻、内向、腼腆、爱面子、不善于表达、自尊心强。主诉:不敢与人正视半年余。独自来询:刚进心理咨询室时,小王拘谨地坐在椅子上,一言不发,低着头盯住自己的
下列诗句,没有反映平面镜成像原理的是()。
世界观、人生观是人们对整个世界和人生的根本观点。人生观是世界观的重要组成部分,是世界观在人生问题上的表现,主要回答人生的价值、目的是什么,人应该怎样度过自己的一生,应该使自己成为一个什么样的人等问题。所以说:
进入21世纪,中国的媒体事件频发。媒体对事件的关注程度和方式决定了公众的态度和事件的发展。人们所看到的已经不是事件本身,而是经过媒体把关后的媒体事件。随着网络的兴起,媒体事件更是集中地以网络事件的形式表现。在网络事件中,网民是网络舆论和网络监督主体。他们的
Islamiclawisaparticularlyinstructiveexampleof"sacredlaw".Islamiclawisaphenomenonsodifferentfromallotherforms
Whatisthemangoingtobuy?
最新回复
(
0
)