首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
admin
2016-11-03
77
问题
将函数f(x)=ln(x+
)展成x的幂级数并求f
(2n+1)
(0).
选项
答案
f′(x)=[*],利用展开式 (1+x)
α
=1+ax+[*]x
n
+… 得到 [*] 再在上式两边积分得到 [*] 级数的收敛区间为(一1,1).但当x=±1时,等式右边的级数为 [*] 为交错级数,满足莱布尼茨准则,是收敛的,故级数的收敛域为[一1,1],即 [*]① 其中x∈[一1,1]. 再求f
(2n+1)
(0).由于f(x)麦克劳林展开式为 [*] 另一方面,由式①得到 f
(2n+1)
(0)=0(n=0,1,2,…),f′(0)=1. [*] =(一1)
n
[*] 故 f
2n+1
(0)=(一1)
n
[1.3.5.….(2n一1)]
2
,n=1,2,3,….
解析
将函数f(x)在点x
0
处展成幂级数,若用直接展开法需求出f
(n)
(x
0
),这是比较困难的.若用间接展开法,可避开求f(x)的n阶导数.本例用间接展开法,为此先求f(x)的导数,将其导数展成x的幂级数后再积分即得函数的幂级数的展开式.设函数f(x)的展开式求出为
f(x)=
a
n
(x—x
0
)
n
.
另一方面,函数f(x)的展开式为
f(x)=
(x—x
0
)
n
.
比较它们的同次幂系数,由展开式的唯一性,有
=a
n
, 即 f
(n)
(x
0
)=a
n
.n!(n=0,1,2,…).
这是求函数在一点处的高阶导数值的有效方法.
转载请注明原文地址:https://kaotiyun.com/show/PXu4777K
0
考研数学一
相关试题推荐
2
10π
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为()
设A,B皆为n阶矩阵,则下列结论正确的是().
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T一T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
随机试题
男,17岁,中学生,急性起病,高热24小时,大便水泻5次来院急诊。查体:体温39.5℃,面色苍白,四肢冷,脉细速,神志模糊,血压75/60mmHg,血常规:WBC25.0×109/L,N85%为迅速明确诊断,立即进行的检查是
女性,23岁,月经期下腹剧痛8年。查体:子宫正常大小,双附件无异常。初步诊断为原发性痛经。该患者已婚,暂无生育计划。最佳治疗方法是
A.T细胞B.B细胞C.NK细胞D.K细胞E.LAK细胞骨髓依赖性淋巴细胞是指
受体是
男,70岁。晨起时出现头晕、右侧肢体无力,约半小时后症状完全消失。头颅CT检查正常。临床诊断为
产褥期生理变化,不正确的是
李老师欲为孙女建立教育基金,希望孙女在未来10年内每年年末得到3万元,若理财师推荐的理财产品收益率为7%,则李老师需投()元。(取近似值)
(2010年国家.58)请从所给的四个选项中,选择最合适的一个填在问号处,使之呈现一定的规律性:
“地道战”、“地雷战”、“鸡毛信”、“小兵张嘎”是哪个时期的象征()。
1991年,陈丹大学毕业。“大学毕业以后我只有一个很朦胧的【131】,想成功,但是并不【132】怎样才能成功。”于是,陈丹开始不断地乱撞。她换过很多工作,做过销售、律师,还曾远【133】欧洲工作,等等。追求完美的陈丹力求把每一件事情都做好,于是她在工作上投
最新回复
(
0
)