首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
admin
2016-10-20
52
问题
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
选项
答案
由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*]
解析
证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/PcT4777K
0
考研数学三
相关试题推荐
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
证明[*]
二次型f(x1,x2,…,xn)=XTAX,其中AT=A,则f(x1,x2,…,xn)为正定二次型的充分必要条件是().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
下列函数均是x→0时的无穷小,按从低阶到高阶的次序将这函数排列起来:(2)x+x2。;(3)1-cosx2;(4)ln(1+x3/2;(5)sin(tan2x).
设求f(x)的间断点,并说明间断点所属类型.
求极限
微分方程dy/dx=y/x-1/2(y/x)3满足y丨x=1=1的特解为y=_________.
随机试题
治疗肝阳上亢型绝经前后诸证,以下哪项选择不恰当:
A.肾小管上皮细胞B.大圆上皮细胞C.小圆上皮细胞D.尾形上皮细胞E.鳞状上皮细胞主要来自尿道的是
女,56岁。干咳、呼吸困难2周,逐渐加重,现不能平卧,无发热。查体:R24次/分,BP85/70mmHg,端坐位,颈静脉怒张,双肺呼吸音清,心脏浊音界向两侧扩大,心率108次/分,律齐,心音低而遥远,心脏各瓣膜听诊区未闻及杂音,奇脉。心电图:窦性心动过
下列选项中,属于企业重大经营决策特点的是()。
在合同执行期间,由于劳务和材料价格的涨落或其他原因使费用增减时,应()。
与逻辑式相等的逻辑式是()。
Thetree,thebranches______arealmostbare,isaveryoldone.
paint()方法使用下列()类型的参数。
Wherearethey?
PoorpeoplehaveIQ’ssignificantlylowerthanthoseofrichpeople.The【S1】______traditionalwisdomhasbeenthatthisisinla
最新回复
(
0
)