首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
admin
2016-01-11
51
问题
验证α
1
=(1,一1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(一9,一8,一13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
,x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
. 于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得[*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且2α
1
+3α
2
一α
3
=β
1
,3α
1
一3α
2
—2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://kaotiyun.com/show/Pi34777K
0
考研数学二
相关试题推荐
微分方程(y2-6x)y’+2y=0(y≥1)满足y(0)=1的解为________.
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为X与Z是否相关?说明理由.
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
当x→(1/2)+时,a(x)=π-3arccosx与β(x)=a(x-1/2)b是等价无穷小,则()
设齐次线性方程组(I)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(一1,2,2,1)T.试问a,b为何值时,(I)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2,已知f(1)=1,求∫12f(x)dx的值。
随机试题
二进制数11111111与二进制数00000000进行按位“与”运算的结果是()
惠州西湖一日彭涯假如给你一日时光停留在惠州,你当然会选择与美相伴,与这里的西湖共度一日的生命。一丝偶然的牵引最容易让人流出那被尘封的情感,一路风尘
男,12岁,误服有机磷农药1605一口,急送医院就诊,当时测定胆碱酯酶活力为54%。患者急诊洗胃,洗胃液忌用
在一定条件下,允许突出道路红线的建筑突出物是()。
生产经营期间的不符合资本化条件的借款利息计入管理费用。()
2013年8月8日,甲、乙、丙、丁共同出资设立了A有限责任公司(下称A公司)。公司未设董事会,仅设丙为执行董事。2014年6月8日,甲与戊订立合同,约定将其所持有的全部股权以20万元的价格转让给戊。甲于同日分别向乙、丙、丁发出拟转让股权给戊的通知书。乙、丙
2005年底,全国城镇房屋建筑面积中非住宅建筑面积为()2005年在全国31个省市自治区中,高于全国城镇人均住宅建筑面积的省市自治区有()
给定关系模式R(A,B,C,D)、S(C,D,E),与π1,3,5(σ2=软件工程,(R0S))等价的SQL语句如下:SELECT_______FRoM,SWHERE_______;下列查询B=“信息”且E=“北京”的A、B、E的关系代数表达式中,查询效率
Sleep,asweknow,isimportanttousbecauseithelpsrestoretiredorgansandtissuesinourbody.Buthowmuchsleepdoweac
Whydidthemangettosleepsolate?
最新回复
(
0
)