首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
admin
2021-11-09
86
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pry4777K
0
考研数学二
相关试题推荐
(1)设f(χ+y,χ-y)=χ2-y2+,求f(u,v),并求.(2)设z=f(χ,y)由f(χ+y,χ-y)=χ2-y2-χy确定,求dz.
设L:(a>0,0≤t≤2π)(1)求曲线L与χ轴所围成平面区域D的面积;(2)求区域D绕χ轴旋转一周所成几何体的体积.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为_______.
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为().
设区域D={(χ,y)|0≤χ≤1,0≤y≤1},则|y-χ2|dχdy=_______.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设连续函数f(x)>0且单调递增,则积分I1=∫0π/2f(x)sinxdx,I2=∫0π/2f(x)cosxdx,I3=∫0π/2d(x)tanxdx的大小关系为()
设当x→0时,有ax3+bx2+cx~sintdt,则().
写出A={0,1,2}的一切子集.
随机试题
下列哪项检查对于总的伴内分泌综合征肿瘤的诊断有帮助
患者,女性,56岁,胆囊切除、胆总管探查、T管引流术后第10天,前一天引流量约为50ml,为正常胆汁,无任何不适主诉。患者起床活动时不慎将T管拉出,正确的处理方法是
以下属于合伙的法律特征的是()。
图示普通钢筋的应-力应变曲线,e点的应力称为:
根据《民用建筑节能管理规定》,施工单位应当按照审查合格的设计文件和()的要求进行施工。
根据下面材料,作答问题。【资料】某小学周老师要上一节公开课,为此她穿了一条非常漂亮的裙子,裙子上用双面胶粘上了很多自己手工制作的红色小花,非常炫目。上课过程中,周老师的教学环节比较清楚,教学效果也比较好。其中有一点让听课老师觉得很有意思。那就是,周老师
占地球大气的组成成分99.96%的是以下哪些气体?()
2009年以来,在灾后恢复重建和扩大内需的各项政策措施的作用下,四川交通运输业投资呈现出快速增长的发展势头。1-4月,全省交通运输业投资255.74亿元,同比增长131.3%,增速较同期全社会投资快52.4个百分点,迎来了高速发展时期。进入200
A.likeB.throughC.consistsofA.whatsubstancesyourtapwater【T1】______B.whilethewaterstreams【T2】______pipelinesC.【T3
为了祛除脸上的黄褐斑,李小姐在今年夏秋之交开始严格按照使用说明去使用艾利雅祛斑霜。但经过整个秋季三个月的疗程,她脸上的黄褐斑毫不见少。由此可见,艾利雅祛斑霜是完全无效的。以下哪项如果是真的,最能削弱上述结论?
最新回复
(
0
)