首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2018-07-26
50
问题
设A是n阶矩阵,A的第i行、第j列的元素a
ij
=i·j.
求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
因A
2
=(aa
T
)(aa
T
)=a(a
T
a)a
T
=(a
T
a)A=[*],故知A的特征值为0,[*]. 当λ=0时,对应的特征向量满足Ax=aa
T
x=0,因a
T
a=[*]≠0,在方程aa
T
x=0两端左边乘a
T
得 a
T
(aa
T
x)=(a
T
a)a
T
x=0,得a
T
x=0. 当a
T
x=0时,两边左边乘a,得aa
T
x=0,故方程组aa
T
x=0与a
T
x=0同解.解方程a
T
x=0,得线性无关的特征向量为 ξ
1
=(一2,1,0,…,0)
T
,ξ
2
=(一3,0,1,0,…,0)
T
,…,ξ
n-1
,=(一n,0,…,0,1)
T
, 因此对应于λ=0的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
,为不全为零的任意常数. 又tr(A)=[*]≠0,故A有一个非零特征值λ
n
=[*] 当λ
n
=[*]=a
T
a时,由λ
n
E—A)x=(a
T
aE一aa
T
)x=0,当x=a时,有 (a
T
aE—aa
T
)a=(a
T
a)a一(aa
T
)a=(a
T
a)a一a(a
T
a)=0, 故ξ
n
=k
n
(1,2,…,n)
T
(k
n
≠0)是对应于λ
n
=[*]的特征向量, 即A有n个线性无关的特征向量,A能相似于对角阵.下同法一.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pyg4777K
0
考研数学一
相关试题推荐
求∫02adx(x+y)2dy.
设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.
设对一切的x,有f(x+1)=—2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性。
若f(x)在x=0的某邻域内二阶连续可导,且=1,则下列正确的是().
求不定积分
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
若(X,Y)服从二维正态分布,则①X,Y一定相互独立;②若ρXY=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任一线性组合服从一维正态分布.上述几种说法中正确的是().
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
设X1,X2,…,Xn是取标准正态总体的简单随机样本,已知统计量Y=服从t分布,则常数α=____________.
随机试题
下列那些中成药剂型在贮存中易被虫蛀
重复服用阿司匹林可能导致的后果有()。
月(季)度成本分析是施工项目定期的、经常性的( )。
在施工安全制度保证体系中,安全作业环境和条件管理制度属于()制度类别。
票据丧失后,如果与票据上的权利有利害关系的人是明确的,则无须公示催告,可按一般的票据纠纷向法院提起诉讼。()
( )是指对自然人去世以后遗留的财产征收的税收,通常包括对被继承人的遗产征收的税收和对继承人继承的遗产征收的税收。
甲和乙进行足球点球比赛,两人各射两次点球,进球数量多的人获胜。甲每次进球的概率为60%,乙每次进球的概率为30%。那么比赛中乙战胜甲的概率为:
文艺复兴时期,在高等教育实践方面,成功创办日内瓦学院的教育家是()。
StaffareinvitedtosetthestandardsthatareusedtoassesstheirproductivityStaffdecideontheirownrequirementsfortr
There’sagreatmanyreasonswhyawoman’sweightmaychangerepeatedly.Somemightsayit’satightworking【T1】______preventing
最新回复
(
0
)