首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0
admin
2018-05-21
39
问题
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f"(x)-3f’(z)+2f(x)]且e
-2x
≠0, 所以f"(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pzg4777K
0
考研数学一
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y’’-2xy’-4y=0,且y(0)=0,y’(0)=1.求y(x)的表达式.
设二维随机变量的联合概率密度为f(x,y)=,其他.求关于X,Y的边缘概率密度fx(x),fY(y),并问X与Y是否独立?
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为求θ的极大似然估计量
平面π:Ax+By+z+D=0被柱面x2+4y2=4所截得的面积为________
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3证明:向量组α1,α2,α3线性无关
设总体X的概率分布为其中θ∈(0,1)未知,以Ni来表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3使为θ的无偏估计量,并求T的方差.
设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=________.
设f(x,y,z)是连续函数,f(0,0,0)=0,I(R)=f(x,y,z)dxdydz则R→0时,下面说法正确的是().
为清除井底的污泥,用缆绳将抓斗放人井底,抓起污泥后提出井口(如图1-3-5所示)。已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉。现将抓起污泥的抓斗提
随机试题
患者,女,15岁。持续高热1周,近日伴腹痛,腹泻,体格检查:肝肋下2cm质软,脾肋下2cm,腹壁可见玫瑰疹,肥达反应“0”≥1:80.“H”≥1:60。首选抗生素是
根据需要,可以对环境做不同的分类。通常按环境的原理,可将环境分为()等几种。
保证合同约定保证人承担保证责任直至主债务本息还清时为止等类似内容的,视为约定不明,保证期间为主债务履行期届满之日起()。
下列关于借款费用的表述中,正确的有()。
根据保险法律制度的规定,下列有关保险合同成立时间的表述中,正确的是()。
被道教誉为“天下第九名山”,有“蜀道明珠”之称的是()。
耕耘:收获
在群体压力下,成员有可能放弃自己的意见而采取与大多数人一致的行为,这就是()。
利他行为:指人们出于自愿、不指望任何报酬的帮助他人的行为。下列属于利他行为的是()。
设是从总体X中取出的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果()
最新回复
(
0
)