首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
admin
2016-10-26
67
问题
设曲线积分 ∮
L
2[xφ(y)+ψ(y)]dx+[x
2
ψ(y)+2xy
2
-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.
(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);
(Ⅱ)计算沿L从点O(0,0)到M(π,
)的曲线积分.
选项
答案
(Ⅰ)由假设条件,该曲线积分与路径无关,将曲线积分记为∮
L
Pdx+Qdy,由单连通区域上曲线积分与路径无关的充要条件知,φ(y),ψ(y)满足[*],即 2[xtφ′(y)+ψ′(y)]=2xψ(y)+2y
2
-2φ(y). 由此得 x[φ′(y)-ψ(y)]=y
2
-φ(y)-ψ′(y). 由于x,y是独立变量,若令x=0,则y
2
-φ(y)-ψ′(y)=0.将之代回上式又得 φ′(y)-ψ(y)=0. 因此,φ(y),ψ(y)满足[*] 将第一个方程ψ(y)=φ′(y)代入第二个方程得φ″(y)+φ(y)=y
2
.这是二阶线性常系数非齐次方程,它的通解是φ(y)=c
1
cosy+c
2
siny+y
2
-2.由条件φ(0)=-2,φ′(0)=ψ(0)=1,得c
1
=0,c
2
=1,于是求得φ(y)=siny+y
2
-2,ψ(y)=φ′(y)=cosy+2y. (Ⅱ)求u使得du=Pdx+Qdy.把φ,ψ的关系式代入并整理得 Pdx+Qdy=φ(y)dx
2
+x
2
dφ(y)+ψ(y)d(2x)+2x[y
2
-φ(y)]dy =d[x
2
φ(y)]+ψ(y)d(2x)+2xdψ(y) =d[x
2
φ(y)+2xψ(y)]. 因此[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q2u4777K
0
考研数学一
相关试题推荐
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
下列各对函数中,两函数相同的是[].
求y=3-x的n阶导数.
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
[*]虑用高斯公式计算,但S不是封闭的,所以要添加辅助面.设所添加铺助面为S1:z=0(x2+y2≤4),法向量朝下,S与S1围成区域Ω,S与S1的法向量指向Ω的外部,在Q上用高斯公式得[*]用先二后一的求积顺序求三重积分:[*]其中Dx
函数f(x)=展开成x的幂级数为___________.
随机试题
教育有哪些主要的社会功能?
变形链球菌的致龋性主要取决于其
让受试者在几种有限选择上回答是让受试者对某些意义不明的图形作出回答是
结账时,没有余额的账户,应当在“借或贷”栏内用“0”表示。()
全面结算会员期货公司应当按规定向期货保证金安全存管监控机构报送非结算会员及非结算会员客户的相关信息。( )
货币市场是融资期限在()的金融市场。
A、 B、 C、 D、 E、 E
效用就是使用价值。
计算
Moreandmore,theoperationsofourbusiness,governments,andfinancialinstitutionsarecontrolledbyinformationthatexists
最新回复
(
0
)