首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: (Ⅰ)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明: (Ⅰ)存在η∈(a,b),使得f(η)=g(η); (Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2013-09-15
65
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
(Ⅰ)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f
’’
(ξ)=g
’’
(ξ).
选项
答案
(1)设f(x),g(x)在(a,b)内某点c∈(a,b)同时取得最大值, 则f(c)=g(c),此时的c就是所求点η,使得f(η)=g(η), 若两个函数取得最大值的点不同,则可没f(c)=maxf(x),g(d)=maxg(x), 故有f(c)-g(c)>0,f(d)-g(d)<0, 由介值定理,在(c,d)内(或(d,c)内)肯定存在η,使得f(η)=g(η). (Ⅱ)由罗尔定理在区间(a,η)、(η,b)内分别存在一点ξ
1
,ξ
2
, 使得f
’
(ξ
1
)=g
’
(ξ
1
),f
’
(ξ
2
)=g
’
(ξ
2
).在区间(ξ
1
,ξ
2
)内再用罗尔定理, 即存在ξ∈(a,b),使得f
’’
(ξ)=g
’’
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/Q634777K
0
考研数学二
相关试题推荐
(2004年)设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是()
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的三个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
A、 B、 C、 D、 C
(2006年)设函数f(x)在x=0处连续,,则()
设随机变量X的概率分布为P{X=1}=P{X=2}=.在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).(Ⅰ)求Y的分布函数FY(Y);(Ⅱ)求EY.
(2018年)设某产品的成本函数C(Q)可导,其中Q为产量.若产量为Q0时平均成本最小,则()
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
[2016年]求极限
已知3阶方阵A的特征值为1,-2,3,则A的行列式|A|中元素a11,a22,a33的代数余子式的和A11+A22+A33=()
随机试题
妊娠合并心脏病孕产妇的主要并发症是
强制性思维和强迫性思维的主要区别为
统计推断的内容是
《关于加强城市总体规划修编和审批工作的通知》规定,修编或调整城市总体规划,凡涉及改变基本农田()的,必须依法按程序办理有关手续。
某水利建筑安装工程的建筑工程单价计算中,直接费为工,其他直接费为Ⅱ,现场经费为Ⅲ,已知间接费的费率为μ,则间接费为()。
国际商品期货交易品种的产生顺序是()。
在货币市场上占有重要地位的国债是()。
具有设计任务书和总体设计,经济上实行独立核算,行政上具有独立组织形式的工程被称为()。[2006年真题]
设一维数组中有n个数组元素,则读取第i个数组元素的平均时间复杂度为()。
在TCP/IP参考模型中,(8)的主要作用是在互联网络的源主机与目的主机对等实体之间建立用于会话的端对端连接。
最新回复
(
0
)