首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2. (1)求A的全部特征值; (2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
(02年)设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2. (1)求A的全部特征值; (2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
admin
2021-01-25
72
问题
(02年)设A为3阶实对称矩阵,且满足条件A
2
+2A=O,A的秩r(A)=2.
(1)求A的全部特征值;
(2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
选项
答案
(1)设λ为A的一个特征值,对应的特征向量为α,则Aα=λ,α≠0;A
2
α=λ
2
α. 于是(A
2
+2A)α=(λ
2
+2λ)α 由条件A
2
+2A=O,推知 (λ
2
+2λ)α=O 又由于α≠O,故有 λ
2
+2λ=0 解得λ=-2,λ=0 因为实对称矩阵A必可对角化,且r(A)=2,所以 [*] 因此,矩阵A的全部特征值为λ
1
=λ
2
=-2,λ
3
=0. (2)实对称矩阵必可用正交矩阵化为对角矩阵,故存在正交矩阵P,使 P
-1
AP=P
T
AP=[*] 从而有P
-1
(A+kE)P=P
T
(A+kE)P=[*] 即A+kE与矩阵D合同,因合同的矩阵有相同的正定性,故A+kE为正定矩阵[*]D为正定矩阵[*]D的各阶顺序主子式都大于零[*]k-2>0,(k-2)
2
>0,(k-2)
2
k>0[*]>2,因此,当k>2时,A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Ax4777K
0
考研数学三
相关试题推荐
设函数f(x)在定义域内可导,y=f(x)的图形如图2.2所示,则导函数y=f’(x)的图形如(图2.3)
[2015年]设矩阵若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
[2017年]设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记则下列结论不正确的是().
[2002年]设A为三阶实对称矩阵,且满足条件A2+2.4=O,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
已知是矩阵的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求(1)未知参数θ的最大似然估计量;(2)未知参数θ的矩估计量;(3)当样本值为1,1,2,1,3,2
(2014年)设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f’(0)=0,求f(u)的表达式。
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
(2000年)求函数y=的单调区间和极值,并求该函数图形的渐近线。
随机试题
氧气自动切割的必要条件之一是燃点要高于熔点。()
科斯定律的理论前提是
呼吸衰竭的血气诊断标准是
企业法律顾问的工作原则是()
某高速公路工程全长160km,跨甲、乙两省市,划分为甲1、甲2、甲3和乙1、乙2、五个施工合同段,并相应设置现场监理机构。请按照监理规范的要求选择适当的监理组织形式,画出监理组织结构图,并分析该组织模式的优缺点。
以下不属于员工动态特征的是()。
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L引起
二战后世界经济走向统一的过程中,仍然存在着多样性,出现了“两种体系、三种国家”,下列不属于社会主义国家经济类型的是()。
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真.最能支持上述论证的结论?
在TCP/IP网络中,主机A和主机B通过一路由器互联,提供两主机应用层之间通信的层是(248),提供机器之间通信的层是(249),具有IP层和网络接口层的设备是(250);在A与路由器和路由器与B使用不同物理网络的情况下,主机A和路由器之间传送的数据帧与路
最新回复
(
0
)