首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2. (1)求A的全部特征值; (2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
(02年)设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2. (1)求A的全部特征值; (2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
admin
2021-01-25
66
问题
(02年)设A为3阶实对称矩阵,且满足条件A
2
+2A=O,A的秩r(A)=2.
(1)求A的全部特征值;
(2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
选项
答案
(1)设λ为A的一个特征值,对应的特征向量为α,则Aα=λ,α≠0;A
2
α=λ
2
α. 于是(A
2
+2A)α=(λ
2
+2λ)α 由条件A
2
+2A=O,推知 (λ
2
+2λ)α=O 又由于α≠O,故有 λ
2
+2λ=0 解得λ=-2,λ=0 因为实对称矩阵A必可对角化,且r(A)=2,所以 [*] 因此,矩阵A的全部特征值为λ
1
=λ
2
=-2,λ
3
=0. (2)实对称矩阵必可用正交矩阵化为对角矩阵,故存在正交矩阵P,使 P
-1
AP=P
T
AP=[*] 从而有P
-1
(A+kE)P=P
T
(A+kE)P=[*] 即A+kE与矩阵D合同,因合同的矩阵有相同的正定性,故A+kE为正定矩阵[*]D为正定矩阵[*]D的各阶顺序主子式都大于零[*]k-2>0,(k-2)
2
>0,(k-2)
2
k>0[*]>2,因此,当k>2时,A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Ax4777K
0
考研数学三
相关试题推荐
设n维行向量A=E一αTα,B=E+2αTα,则AB为().
[2006年]设总体X的概率密度为f(x)=e-|x|/2,-∞<x<+∞.X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则E(S2)=___________.
[2012年]设X1,X2,X3,X4为来自总体N(1,σ2)(σ>0)的简单随机样本,则统计量的分布为().
[2009年]设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布P(Y=0)=P(Y=1)=1/2.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点的个数为().
[2009年]设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为().
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
极限
随机试题
男性,36岁,2天前着凉后发热,体温38.9℃,伴呼吸困难,咳嗽,咳少量黄痰,腹泻两次,自服“先锋霉素”无效。入院查体:嗜睡,口唇轻度发绀,脉搏100次/分,呼吸28次/分,双肺叩清音,双下肺可闻及湿啰音,心律整,腹(一),血WBC12.3×109/L,中
在一项有关某病50名病例和50名对照的研究中,关于某一可能的病因因素所发现的差异并无统计学显著性,由此可得出结论
病例对照研究与队列研究的主要相同点是
A.期色味质B.期量色味C.期量色质D.量色质味E.期量味质问诊应注意问月经的
下列不符合交感神经兴奋时表现的是
动员预付款的付款条件是()。
不同标价方法下买入价的含义不同。在直接标价法下,买入价指银行买入一定的外币而付给顾客的若干本币数。在间接标价法下,买入价指银行买入若干个外币而付给顾客的一定的本币数。()
上市公司下列交易或事项形成的资本公积中,可以直接用于转增股本的是( )。
说明现有虚拟局域网络的四种划分方式。在VLAN的各种划分方式中,哪种方式的智能化最高?
下列数据结构中,属于非线性结构的是
最新回复
(
0
)