首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-09-20
53
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.
证明:对任意a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)-f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =∫
0
1
[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/QNW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:求
设S(x)=∫0x|cost|dt.证明:求
随机试题
焦痂切开减压术手术时机一般不应超过
影响水在细胞内外扩散的主要因素是
下列关于ETF份额折算与变更登记的表述,正确的是()。
人民警察职业道德的特征是()。
根据下列资料,回答问题。2014年上半年全国共生产汽车1178万辆,同比增长9.6%,其中,乘用车971万辆,同比增长12.1%;商用车207万辆,同比下降0.6%。销售汽车1168万辆,同比增长8.4%,其中乘用车963万辆,同比增长11.2%
阅读下列说明,回答问题1至问题3。[说明]某大型电声器件集团公司计划利用企业自有资金建设“电声器件网上交易系统”。经过公司技术部和市场部的联合调研,得出以下初步结论。(1)系统研发(包括测试和中试)期1年。(2)研发
为了提高DRAM的读写速度,通常采用一些特殊的技术开发多种不同类型的DRAM。下面四种DRAM中速度最快的是
Whendidthefilmbegin?
Howmenfirstlearnttoinventwordsisunknown;inotherwords,theoriginoflanguageisamystery.Allwereallyknowisthat
Herpanicwastransient,andceasedwhenshebegantospeak.
最新回复
(
0
)