首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2020-06-05
45
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)二次型f的矩阵为 A=[*] 设矩阵A的特征值为λ
1
,λ
2
,λ
3
,依题意有 [*] 由于b﹥0,解得a=1,b=2. (2)矩阵A的特征多项式为 |A-λE|=[*] =﹣(λ-2)
2
(λ+3) 所以得A的特征值为λ
1
=λ
2
=2,λ
3
=﹣3. 当λ
1
=λ
2
=2时,解方程组(A-2E)x=0.由 (A-2E)=[*] 得基础解系为p
1
=(0,1,0)
T
,p
2
=(2,0,1)
T
,p
1
,p
2
正交,将其单位化得 q
1
=(0,1,0)
T
,q
2
=[*] 当λ
3
=﹣3时,解方程组(A+3E)x=0.由 (A+3E)=[*] 得基础解系为p
3
=(1,0,﹣2)
T
,将其单位化得q
3
=[*].于是正交变换为 [*] 且把二次型f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QNv4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,且A的行列式|A|=0,则A().
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型厂对应的矩阵为2ααT+ββT;
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)=一为正定二次型.
设,讨论当a,b取何值时,方程组Ax=b无解、有唯一解、有无数个解,有无数个解时求通解.
随机试题
关于胎盘绒毛膜血管瘤临床及声像图特点描述,不正确的是
生命活动中能量的直接供体是()。
有一房地产,未来第一年净收益为20万元,预计此后各年的净收益会在上一年的基础上增加2万元,收益期为无限年,该类房地产资本化率为10%,则该房地产的收益价格为()万元。
社会工作者在服务过程中不把自身价值观强加给服务对象,还能与服务对象分享与服务内容有关的个人感受和经验,并提供解决问题的信息及建议,以便服务对象更好地解决其问题。上述做法体现的社会工作基本信念和实践原则是()。
钥匙罗兰①自从有一天,和他因小事争吵,我一怒离家,回来时却发现忘带钥匙,又不肯按铃请他来为我开门,只得索性坐火车去高雄住了一夜。那以后,我对钥匙就十分小心。在这
在设计条件宏时,对于连续重复的条件,要代替重复条件,表达式可以使用符号()。
Hewasseriouslyinjuredinacaraccident,whichwas______tofaultybrakes.
EatingOurYoung[A]AtFeltonvilleSchoolofArtsandSciences,amiddleschoolinapoorneighborhoodofPhiladelphia,thescho
Don’tSayIt’sGlobalWarmingA)AsTexasendurestheslow,agonizingdeathofourentireagriculturalsectorbydrought,acheck
A、Afriendwithrichknowledge.B、Afriendwhohasstudiedoverseas.C、Herteachersandadvisors.D、Herclassmates.C
最新回复
(
0
)