首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
admin
2020-04-30
42
问题
已知A是3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.
用正交变换x=Py化二次型x
T
Ax为标准形,并写出所用的正交变换;
选项
答案
取α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
,α=(1,2,-1)
T
.显然α
1
,α
2
与α正交,而α
1
,α
2
是线性无关的(可用施密特标准正交化),也可取ξ
1
=α
1
=(1,-1,-1)
T
,ξ
2
=α
1
+α
2
=(1,-1,-1)
T
+(-2,1,0)
T
=(-1,0,-1)
T
,ξ
3
=α=(1,2,-1)
T
.则ξ
1
,ξ
2
,ξ
3
两两正交,单位化,得 [*] 令[*],则P为正交矩阵,x=Py为正交变换,该变换将二次型x
T
Ax化为标准形为f=6y
2
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QQv4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α,A(α1+α2)线性无关的充分必要条件是()
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1—α2,α1+α2—2α3,(α2—α1),α1—3α2+2α3中,是方程组Ax=0解向量的共有()
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为()
设A为n阶矩阵,且|A|=0,则A().
随机试题
视频信号的频率范围是()
Thereisnocreaturethatdoesnotneedsleeporcompleteresteveryday.Ifyouwanttoknowwhy,justtrygoingwithoutsl
下列方剂中,体现寒热并用、辛开苦降、邪正兼顾的方剂是
泌尿系统的功能除外的是
口腔鳞癌最少发生转移的是
计量检定员证的有效期为()。
A.watchB.informationC.withA.associated【T7】______a22-minutereductionintheirlifeexpectancyB.livedanaverag
中国第一个资产阶级革命组织是
Whatisthereintheshop?
HappyFather’sDayTheideaforFather’sDaystartedin1901.AwomannamedSonoraDoddthoughtaboutstartingaFather’sDa
最新回复
(
0
)