首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是( )
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是( )
admin
2022-05-20
50
问题
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是( )
选项
A、A,B的列向量组等价
B、A,B的行向量组等价
C、A,B是等价矩阵
D、A
T
x=0与B
T
x=0同解
答案
B
解析
对于B,若Ax=0与Bx=0同解,考虑方程组
即A,B的行向量组等价,反之,若A,B的行向量组等价,记
即列向量组α
1
T
,α
2
T
,…,α
m
T
与β
1
T
,β
2
T
,…,β
m
T
等价,故存在矩阵P,Q,使得
(α
1
T
,α
2
T
,…,α
m
T
)=(β
1
T
,β
2
T
,…,β
m
T
)P,
(β
1
T
,β
2
T
,…,β
m
T
)=(α
1
T
,α
2
T
,…,α
m
T
)Q.
所以A=P
T
B,B=Q
T
A,故由Ax=0,得Bx=Q
T
Ax=0.反之,由Bx=0,得
Ax=P
T
Bx=0,即Ax=0与Bx=0同解.故B正确.
对于A,由B的证明,知A不正确.
对于C,相当于r(A)=r(B),是必要非充分条件.
对于D,举反例,例如
显然,Ax=0与Bx=0同解,但A
T
x=0与B
T
x=0不同解.
转载请注明原文地址:https://kaotiyun.com/show/QUR4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x24x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+6y32,求:(I)参数a,b的值;(Ⅱ)正交变换矩阵Q。
[*]
设X的概率密度为(I)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数.
设级数收敛,则级数().
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(—1.1,0,2)T+k(1,—1,2,0)T,则β能否由α1,α2,α3线性表示?为什么?
已知X1,…,Xn为总体,X的一组样本,总体X的概率密度为θ的矩估计量;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T十k1(1,0,2,1)T+k2(2,1,1,—1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
设z=f(x,y)在点(1,2)处存在连续的一阶偏导数,且求
改变积分次序∫0adxf(x,y)dy.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f”(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且φ(x)dx=1.证明:f(x)φ(x)dx≥f[xφ(x)dx].
随机试题
项目型组织结构的缺点是()。
保险人的义务的有()
流动采血监控工作不包括
公司出资存在哪些问题?若丙想转让股权以退出公司,应按何种方式进行?
2009年3月,某人由中方企业委派到合资企业工作,派遣单位和雇佣单位每月分别支付其工资1400元和8000元,按照协议,个人需向派遣单位缴款3000元。该个人每月应纳的个人所得税为()。
正达会计师事务所长期以来主要开展对银行、保险公司等金融机构的年报审计业务。2007年5月初,事务所的负责人张平成正在考虑下列客户的具体情况,以保持审计业务的独立性。下面是正达会计师事务所及注册会计师与客户之间往来的相关情况:(1)A保险公司于2
已知FeSO4.7H2O晶体在加热条件下发生如下反应:2FeSO4.7H2OFe2O3+SO2↑+SO3↑+14H2O↑;如下图装置经组装后,可用来检验上述反应中所有的气体产物,请回答下列问题:用于检验SO2气体的装置是:_________(填装置的
试论述初中生人际交往的新特点。
中国绘画是以庄子哲学为精神宗旨的。其最高境界是在人与对象的双重自然状态下实现物我浑融的境界。《庄子.田子方》载,宋元君招试画师,应试者皆___________,唯有一后到者,“解衣盘礴赢”,任性自然地投身于画作。宋元君称此人为“真画者”。所谓“真画者”,是
数据访问页中主要用来显示描述性文本信息的是()。
最新回复
(
0
)