首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组 试问: (1)a为何值时,向量组线性无关? (2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
设向量组 试问: (1)a为何值时,向量组线性无关? (2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
admin
2021-02-25
75
问题
设向量组
试问:
(1)a为何值时,向量组线性无关?
(2)a为何值时,向量组线性相关,此时求齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的通解.
选项
答案
依题意有x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.对方程组的系数矩阵A施以初等行变换,得 [*] 显然,当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 x
1
+x
2
+x
3
+x
4
=0, 此时,方程组的通解为 [*] 其中k
1
,k
2
,k
3
为任意常数. 当a≠0时,由 [*] 显然,当a≠-10时,r(A)=4,故方程组仅有零解,从而α
1
,α
2
,α
3
,α
4
线性无关. 当a=-10时,r(A)=3<4,此时方程有非零解,从而α
1
,α
2
,α
3
,α
4
线性相关. 此时通解为 [*]
解析
本题考查向量组线性相关性的定义,并注意到向量组α
1
,α
2
,α
3
,α
4
线性无关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0仅有零解;若向量组α
1
,α
2
,α
3
,α
4
线性相关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0有非零解.
转载请注明原文地址:https://kaotiyun.com/show/QY84777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1,+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
改变积分次序
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
证明n维向量α1,α2……αn线性无关的充要条件是
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
随机试题
苯巴比妥钠制成粉针剂的原因是()。
消防专用电话系统调试中,应接通电源,使消防电话总机处于正常工作状态,对消防电话总机进行检查并记录的主要功能有()。
在会计工作由手工核算向电算化过渡时,需要整理各账户余额,如果在()建账时,只需要整理各账户期初余额。
资料一近年来,电商领域的竞争日趋激烈,而曾经在B2C电商领域引领潮流,率先在美国上市的DD却日趋低调。在中国B2C市场份额上,DD甚至已经被远远地抛在了后面。DD于1999年11月正式运营,初期定位为图书音像制品电子商务平台,逐步占据了图书市场领导
2017年1月10日,甲公司与乙公司签订一份买卖合同。合同约定:甲公司向乙公司购买CAT320B型挖掘机5台,每台40万元,共计200万元:合同签订之日起5个工作日内甲公司向乙公司付款100万元,余款自挖掘机交付之后每月5日前支付10万元,10个月付清;甲
会议沟通的显著特点是()。
材料1:我们真的需要学校吗?不是指教育,而是指强制上学:六节课一天,一周五天,一年九个月,十二年。这个死规矩是否真有必要?如果真有必要,原因何在?不要以阅读、写作、算术来搪塞,因为两百万“在家上学的学生(homeschooler)”对这种老生常谈早已置之不
在利用菜单编辑器设计菜单时,为了把组合键“Alt+X”设置为“退出(X)”菜单项的访问键,可以将该菜单项的标题设置为
Whatdoesthewomanwanttodo?
A、Hiseagernesstofindajob.B、Histhirstforknowledge.C、Hispotentialforleadership.D、Hiscontemptforauthority.B演讲者讲到有
最新回复
(
0
)