首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
admin
2019-02-23
53
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
选项
A、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
.
B、η
1
,η
2
,η
3
+η
4
,η
3
-η
4
.
C、η
1
,η
2
,η
3
,η
4
的一个等价向量组.
D、η
1
,η
2
,η
3
,η
4
的一个等秩的向量组.
答案
B
解析
向量组(A)线性相关,(A)不正确.
η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与η
1
,η
2
,η
3
,η
4
等价.但前者线性相关,故(C)不正确.
等秩的向量组不一定能互相线性表出,因而可能不是方程组的解,故(D)不正确.选(B).
转载请注明原文地址:https://kaotiyun.com/show/Qn04777K
0
考研数学一
相关试题推荐
计算I=(x+y)2dxdy,其中D:|x|+|y|≤1.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵
因为f(x)在x=0处可导,所以f(x)在x=0处连续,从而有f(0+0)=2a=f(0)=f(0一0)=3b,[*]
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=O的解向量,求Bx=0的解空间的一个规范正交基.
问λ取何值时,齐次线性方程组,有非零解.
设总体X~U(1,θ),参数θ>1未知,X1,…,Xn是来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量和极大似然估计量;(Ⅱ)求上述两个估计量的数学期望。
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为________.
设A,B为三阶矩阵,A~B,λ1=一1,λ2=1为矩阵A的两个特征值,又|B-1|=则
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则()
设A,B为两个随机事件,其中0
随机试题
A.可与Ca2+结合B.有与肌球蛋白结合的位点C.分子呈豆芽状D.位于双股螺旋链沟内肌钙蛋白()
休克后发生的多器官功能障碍属于双相迟发型。
瘀阻头面,见头痛昏晕,耳聋,脱发,面色青紫者,治宜选用跌打损伤,瘀留胁下,痛不可忍者,治宜选用
隐性肺癌的病理特点包括
水肿病因是不恰当的处理是给予
毛果芸香碱对眼的作用表现为
中国居民“平衡膳食宝塔”的最底层,即居民膳食中最基本的组成部分是
癌与肉瘤的最主要区别是发生部位不同。()
用于公路工程施工的混凝土主要有()。
汽车制造业属于()。
最新回复
(
0
)