首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
admin
2018-11-11
32
问题
设c
1
,c
2
,…,c
n
均为非零实常数,A=(a
ij
)
n×n
为正定矩阵,令b
ij
=a
ij
c
i
c
j
(i,j=1,2,…,n),矩阵B=(b
ij
)
n×n
,证明矩阵B为正定矩阵.
选项
答案
由b
ji
=b
ij
,知B对称.若χ
1
,χ
2
,…,χ
n
不全为0,则c
1
χ
1
,c
2
χ
2
,…,c
n
χ
n
不全为零,此时,(χ
1
,χ
2
,…,χ
n
)B(χ
1
,χ
2
,…,χ
n
)
T
=[*]accχχ=[*]a(cχ)(cχ)>0,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/RJj4777K
0
考研数学二
相关试题推荐
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2.且行列式的值为1,求m,k.
设函数f(x)在区间[0,+∞)上连续且单调增加,证明g(x)=在[0,+∞)上也单调增加.
计算其中D是以(0,0),(1,1),(0,1)为顶点的三角形.
试证向量a=一i+3j+2k,b=2i一3j一4k,c=一3i+12j+6k在同一平面上.
给定椭球体在第一象限的部分.(1)求椭球体上任意点M0(x0,y0,z0)(x0>0,y0>0,z0>0)处椭球面的切平面.(2)在何处的切平面与三个坐标面围成的空间区域的体积最小.
将函数arctanx一x展开成x的幂级数.
设f(x)在[a,b]上有二阶连续导数,证明
(1996年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于
设f(χ)在(0,+∞)三次可导,且当χ∈(0,+∞)时|f(χ)|≤M0,|f″′(χ)|≤M3,其中M0,M3为非负常数,求证f〞(χ)在(0,+∞)上有界.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
正常人耳对声音频率的最敏感范围是
关于肾窦的描述正确的是
A.易溶于水,主要损伤眼结膜和上呼吸道B.难溶于水,能进入呼吸道深部C.经肺泡进入血液后,与血红蛋白很快结合形成碳氧血红蛋白D.对上呼吸道刺激,并对牙齿引起酸蚀症E.是二氧化氮的二次污染物,具有强烈刺激作用氮氧化物
A.肺大疱B.肺脓肿C.浸润型肺结核空洞形成D.慢性纤维空洞型肺结核E.周围型肺癌空洞形成X线下见右上肺有多发的厚壁空洞,周围有较广泛的纤维索条影。应首先考虑的是
直接作用于中枢神经系统,使之兴奋或抑制,连续使用能产生依赖性的药品是注射剂处方每次不超过三日常用量的药品是
用于指导设备监理机构全面开展监理工作的指导性文件是( )。
某国有企业工人的工资水平按有关规定从低到高分为一级至五级。根据下表中该企业按2012年度工人工资状况整理的累积频数分布表,该企业工资等级为四级的工人占全体工人的百分比为()。
若集合M={-1,0,1},N={0,1,2},则M∪N=().
现在很多用人单位都看重工作经验,很多大学生在校期间就经常参加兼职,对此很多专家认为是“不务正业”,你怎么看?
Whydidthemanwatchthevideo?
最新回复
(
0
)