首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
经过两个平面 ∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x一y一z=0垂直的平面方程是____________.
经过两个平面 ∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x一y一z=0垂直的平面方程是____________.
admin
2018-11-21
64
问题
经过两个平面 ∏
1
:x+y+1=0,∏
2
:x+2y+2z=0的交线,并且与平面∏
3
:2x一y一z=0垂直的平面方程是____________.
选项
答案
3x+4(y+1)+2(z一1)=0
解析
用点法式.设平面∏的法向量是n={A,B,C},由于∏,∏
1
,∏
2
交于一条公共直线,所以法向量n,n
1
,n
2
共面,且n可由n
1
,n
2
线性表出,故可设n=tn
1
+un
2
.因为∏⊥∏
3
,故n.n
3
=0,即2(t+u)一(t+2u)一2u=0,取t=2,u=1,得到法向量n={3,4,2}.
联立∏
1
,∏
2
,求
交点得(0,一1,1)是平面∏上一点,从而由点法式得
∏: 3x+4(y+1)+2(z一1)=0.
转载请注明原文地址:https://kaotiyun.com/show/ROg4777K
0
考研数学一
相关试题推荐
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=则()
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有()
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将,熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量(Ⅰ)求的关
已知向量组α1=(1,2,-1,1)T,α2=(2,0,t,0)T,α3=(0,-4,5,t)T线性无关,则t的取值范围为_______。
设方阵A1与B1合同,A2与B2合同,证明:合同。
对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则()
随机试题
男性,30岁。既往健康,胸片示右上浸润型肺结核,痰菌(+),应用常规量异烟肼、利福平、乙胺丁醇口服,链霉素肌注,两周后,患者仍有低热、盗汗。你考虑以下哪种情况
某生猪屠宰场在宰后检疫时发现肩胛肌等横纹肌内有粟粒至米粒大小,半透明,大小(6~10)mm×5mm,剥离的包囊及肌肉内的包囊,见下图。此猪感染的寄生虫是
关于产褥感染的描述,以下哪项恰当
(2009年考试真题)深圳证券交易所规定,采用竞价交易方式的,每个交易日的()为开盘集合竞价时间。
市场准入是金融机构获得许可证的过程,各国对金融机构实行监管都是从实行市场准入管制开始的。()
学校的中心工作是()。
文化发展对学校课程产生的影响主要体现在()。
20世纪90年代,柯达被公认为全球最有价值的五大品牌之一,据统计,柯达掌握着至少1000项数字图像、影像专利。然而市场瞬息万变,巅峰之后,柯达难以挽回地开始走下坡路。当然,柯达也曾经尝试转型,比如它曾想将成功的商业模式复制到新拓展的药品和化学行业,但由于缺
对下列二叉树进行中序遍历的结果是( )。
Isawatelevisionadvertisementrecentlyforanewproductcalledanairsanitizer.Awomanstoodinherkitchen,sprayingthe
最新回复
(
0
)