首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3. (I)问ξ1﹢ξ2是否是A的特征向量?说明理由; (Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由; (Ⅲ)证明任意3维非零向量β都是A2的特征向
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3. (I)问ξ1﹢ξ2是否是A的特征向量?说明理由; (Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由; (Ⅲ)证明任意3维非零向量β都是A2的特征向
admin
2018-12-21
36
问题
A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
=-2对应的特征向量是ξ
3
.
(I)问ξ
1
﹢ξ
2
是否是A的特征向量?说明理由;
(Ⅱ)问ξ
2
﹢ξ
3
是否是A的特征向量?说明理由;
(Ⅲ)证明任意3维非零向量β都是A
2
的特征向量,并求对应的特征值.
选项
答案
(I)ξ
1
﹢ξ
2
仍是A的对应于λ
1
=λ
2
=2的特征向量. 因已知Aξ
1
=2ξ
1
,Aξ
2
=2ξ
2
,故 A(ξ
1
﹢ξ
2
)=Aξ
1
﹢Aξ
2
=2ξ
1
﹢2ξ
2
=2(ξ
1
﹢ξ
2
). (Ⅱ)ξ
2
﹢ξ
3
不是A的特征向量.假设是,设其对应的特征值为μ,则有 A(ξ
2
﹢ξ
3
)=μ(ξ
2
﹢ξ
3
), 得 2ξ
2
-2ξ
3
-μξ
2
-μξ
3
=(2-μ)ξ
2
-(2﹢μ)ξ
3
=0, 因2-μ和2﹢μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾, 故ξ
2
﹢ξ
3
不是A的特征向量. (Ⅲ)因A有特征值λ
1
=λ
2
=2,λ
3
=-2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
,ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E, 从而对任意的β≠0,有A
2
β=4EB=4β,故知任意3维非零向量β都是A
2
的对应于特征值μ=4的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/S8j4777K
0
考研数学二
相关试题推荐
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2010年)函数y=ln(1-2χ)在χ=0处的n阶导数y(n)(0)=_______.
(2011年)设函数f(χ)在χ=0处可导,且f(0)=0,则=【】
(2012年)证明:χln(-1<χ<1).
(2008年)设函数y=y(χ)由参数方程确定,其中χ(t)是初值问题的解,求.
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
(1987年)求(a,b是不全为零的非负常数).
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
求二重积分,直线y=2,y=x所围成的平面区域.
随机试题
下列哪一项所论不妥
Carefulsurveyshaveindicatedthatasmanyas50percentofpatientsdonottakedrugs______directed.
平胃散主治证的病机是
A.1岁B.2岁C.3岁D.4岁E.5岁小儿T细胞分泌INF-γ达成人水平的年龄是
诚实守信是做人的基本准则,也是会计职业道德的精髓。请指出诚实守信的含义?如果你是一名会计人员,如何做到会计职业道德关于诚实守信的要求?
事业单位以货币资金对外投资时,可能会涉及下列()科目。
下列犯罪在量刑时应并处罚金的有()。
[*]
Bubblegumisnotatopicusuallytreatedseriously,soitisappropriatethatthisnewbooktracingtheculturedhistoryofbub
A、Thejobdon’thavegoodprospects.B、Heearnsfairlyalittle.C、Hefoundabetterjob.D、Hecan’tgetinterestedinthejob.
最新回复
(
0
)