首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2018-05-23
100
问题
设α
1
=(1,3,5,一1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,一1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. [*] 得a=一3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,一6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用αα
1
,α
2
,α
3
,α
4
线性表示. 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0. 得α
4
=0,与α
4
是非零向量矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/SdX4777K
0
考研数学三
相关试题推荐
已知两曲线y=f(x)与在点(0,0)处的切线相同.求此切线的方程,并求极限
设函数在x=1处连续,则A=________.
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则Emin(X,Y)=________.
设函数f(x)在[0,1]上连续,(0,1)内可导,且3f(x)dx=f(0).证明:在(0,1)内存在一点c,使fˊ(c)=0.
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止,试求试验次数的数学期望.
设总体X和Y相互独立,且分别服从正态分布N(0,4)和N(0,7),X1,X2,…,X8和Y1,Y2,…,Y14分别来自总体X和Y的简单随机样本,则统计量的数学期望和方差分别为________.
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,且X与Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
已知事件A发生必导致B发生,且0<P(B)<1,则=
随机试题
从人类原始的好奇心和探究欲中派生出来的内驱力是奥苏贝尔所说的()
治疗饮食伤胃之胃痛可选的方剂是
下列选项中,关于城市规划与城市生态环境、城市环境保护规划的关系,叙述错误的是()。
[*]
某公司采用托收承付结算方式向甲公司销售商品一批,货款50000元,增值税税额8500元,以银行存款代垫运杂费10000元,已办理托收手续,下列账务处理中,错误的是()。
中学教科书中的练习题多属于()的问题。
近年来,志愿者运动________,说明我国经济获得长足发展之后,有了推行志愿者运动的________。尽管初始稚步,但既然开始了,且方向正确,总会逐渐成熟。填入画横线部分最恰当的一项是:
在表单中为表格控件指定数据源的属性是( )。
有以下程序#includeintfun(inta,intb){staticintm=0,i=2;i+=m+1;m=i+a+b;returnm;}main(){intk=4,m=1,p;p=f
TheotherdayIwaslisteningtoaChristianradioprogramonthewaytothegym.Eachdaytheyaskaquestionfortheirlistene
最新回复
(
0
)