首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy-x2-y2在闭区域D={(x,y)|x≤z≤1,0≤y≤2}上的最大值和最小值.
求f(x,y)=x+xy-x2-y2在闭区域D={(x,y)|x≤z≤1,0≤y≤2}上的最大值和最小值.
admin
2016-07-22
53
问题
求f(x,y)=x+xy-x
2
-y
2
在闭区域D={(x,y)|x≤z≤1,0≤y≤2}上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy-x
2
-y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=x+xy-x
2
-y
2
在闭区域D内部的极值: 解方程组[*]由 g(x,y)=(f’’
xy
)
2
-f’’
xx
f’’
yy
=-3, 得f(x,y)=x+xy-x
2
-y
2
在闭区域D内部的极大值[*] 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在z轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy-x
2
-y
2
+λy, 解方程组[*] 在下面边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以,下面边界的最大值为[*],最小值为0. 同理可求出: 在上面边界上的最大值为-2,最小值为-4; 在左面边界上的最大值为0,最小值为-4; 在右面边界上的最大值为[*],最小值为-2. 比较以上各值,可知函数f(x,y)=x+xy-x
2
-y
2
在闭区域D上的最大值为[*],最小值为-4.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sew4777K
0
考研数学一
相关试题推荐
f(x,y)=x3+y3-3xy的极小值.
在右半平面内向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj是二元函数u(x,y)的梯度,求参数λ,u(x,Y).
求,其中∑为下半球面∑:的上侧,a为大于零的常数.
设y=g(x,z),z=z(x,y)是由方程f(x-z,xy)=0所确定的,其中f,g具有一阶连续的偏导数,求dz/dx.
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
已知曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,求:曲面S与平面π的最短距离.
设曲面S为旋转抛物面z=x2+y2被平面z=1所截下的部分,求曲面S在平面xOy和平面yOz上的投影区域.
设向量场μ(x,y,z)=yz2i+zx2j+xy2k,则rotμ=________.
设B为n×m实矩阵,且r(B)=n,则下列命题中①BBT的行列式的值为零;②BBT必与单位阵等价;③BBT必与对角阵相似;④BBT必与单位阵合同。正确的个数有()
根据题意,令[*]将点(2,1,1)代入,上式=(1,1,1).
随机试题
根据以下情境材料,回答下列问题。大学生小李第一次去某大城市旅游,正值旅游旺季,各酒店客房爆满。小李好不容易订上某酒店的一个标准间。夜晚时分,小李到达酒店,从大楼东侧电梯上18楼,顺楼道径直抵达1810客房入住,楼道两侧客房有14间。夜深时分,楼道间
2008年6月30日,胡锦涛总书记在抗震救灾先进基层党组织和优秀共产党员代表座谈会上概括的伟大抗震救灾精神是
小儿出现高热,面部青紫,尤以鼻柱、两眉间及口唇四周为甚,往往属于
A.CK-MBB.GGTC.LDHD.ALTE.HBDH病毒性肝炎明显升高的酶是
运用各种最新技术实现企业的信息流、物流及资金流的集成和优化运行,使企业赢得竞争的一种生产模式即是()。
下列各项中,违反民法自愿原则的有()。
中国共产党独立领导革命战争和创建人民军队始于()。
东南亚国家和地区高等学校招生主要实行()。
(2016·江西)德育原则是德育工作中必须遵守的基本要求。以下表述能反映因材施教原则的是()
A、Itwillreducegovernmentrevenues.B、Itwillstimulatebusinessactivities.C、Itwillmainlybenefitthewealthy.D、Itwillc
最新回复
(
0
)