首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
设α1,α2,…,αs为线性方程组AX=0的一个基础解系. β1=t1α1+t2α2, β2=t1α2+t2α3, …, βs=t1αs+t2α1, 其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
admin
2019-05-08
31
问题
设α
1
,α
2
,…,α
s
为线性方程组AX=0的一个基础解系.
β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
, …, β
s
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数,试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
选项
答案
由α
1
,α
2
,…,α
s
为AX=0的基础解系知,s=n-秩(A),因β
1
,β
2
,…,β
s
均为α
1
,α
2
,…,α
s
的线性组合,而α
1
,α
2
,…,α
s
又为AX=0的解,根据齐次方程解的性质知,β
i
(i=1,2,…,s)为AX=0的解.下面证β
1
,β
2
,…,β
s
线性无关,给出两种证法. 证一 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
s
k
s
)α
s
=0. 由于α
1
,α
2
,…,α
s
线性无关,于是得 [*] 因方程组①的系数矩阵的行列式为 [*] 故当t
1
s
+(-1)
s+1
t
2
s
≠0时,方程组①只有零解,即k
1
=k
2
=…=k
s
=0,从而β
1
,β
2
,…,β
s
线性无关,即当s为偶数且t
1
≠±t
2
,或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系. 证二 由命题2.3.2.4(6)知,当s为偶数且t
1
≠±t
2
或s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关,从而β
1
,β
2
,…,β
s
也为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SsJ4777K
0
考研数学三
相关试题推荐
求级数的收敛域与和函数.
求.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
曲线y=的斜渐近线为______.
求和n=0,1,2,3,…
随机试题
_________是艺术品的直接性物质存在。
以下合同成立的有:()
肠内营养并发症与输入速度及溶液浓度有关的是
依照《刑事诉讼法》的规定,追究刑事责任的执法主体是()。
美国金融监管体制实行机构性监管和功能性监管相结合.是一种典型的“双重多头”监管体制。()
ItwasMother’sDayandIwasshoppingatthelocalsupermarketwithmyfive-year-oldson,Tenyson.Aswewere【C1】______,werea
2,4,6,9,13,19()。
下列关于信号量使用的叙述中,哪些是正确的?()
A、 B、 C、 D、 B
A、Totransportwatertohigherelevation.B、Toprovideair-conditioning.C、Tobringnutrientstothesoil.D、Toadjustthesoil
最新回复
(
0
)