首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称:会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并
“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称:会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并
admin
2015-04-21
70
问题
“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称:会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。
通过题干来完成下列教学设计。
(1)给出本课程的课题引入;
(2)根据教学目标设计教学环节;给出两个实例以进行知识探究。
选项
答案
课题引入:(引导性材料) 想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么特点? (帮助学生复习轴对称的有关知识,为中心对称教学作准备) [*] 画一画:如图1(1),已知点P和直线l,画出点P关于直线l的对称点P’;如图1(2),已知线段MN和直线a,画出线段MN关于直线口的对称线段M’N’。 (通过画图形进一步巩固和加深对轴对称的认识) 上述问题由学生回答,教师作必要的提示,并归纳总结成下表: [*] 观察与思考:图2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴,如果不是,说明理由。 [*] (教师把图2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。) 问题1:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗? 说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。 问题2:你能给“中心对称”下一个定义吗? 说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:①有一个对称中心——点;②图形绕中心旋转180度;③旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。 (2)教学环节: 环节1:练一练:在图3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。 [*] 说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段A C和EG。线段BC和FG都是对称线段。教师还可向学生指出,上图中,点A、O、E在一条直线上,点C、O、G在一条直线上,点B、O、F在一条直线上,且AO=EO,BO=FO,CO=GO。 问题:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质? 说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理1——关于中心对称的两个图形是全等形;定理2——关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 问题:定理2的题设和结论各是什么?试说出它的逆命题。 说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”、“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”、“对称中心”这样的词语,而要改为“对应如”、“某一点”,最后,教师应完整地叙述这个逆命题一如果两个图形的对应点连线郜经过某一点,并且被这一点平分,那么这两个图形关于点对称。 问题:怎样证明这个逆命题是正确的? 说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件——对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定与另一个图形重合,因此,根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。 环节2:练一练:画出图4中,线段PO关于点O的对称线段P’O’。 [*] (画法如下:(1)连结PO,延长PO到P’,使OP’=OP,点P’就是点P关于点O的对称点,(2)连结QO,延长QO到Q’,使Q’Q=OQ,点Q’就是点Q的对称点,则PQ’就是线段PQ关于O点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)
解析
转载请注明原文地址:https://kaotiyun.com/show/TItv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
材料一课程标准内容课程内容2.1知道我国的人口、资源、环境等状况,了解计划生育、保护环境、合理利用资源的政策,形成可持续发展意识。活动建议2.1调查本地区存在的资源短缺问题,根据科学发展观的要求,通过讨论共同设计一条珍惜资源的宣传标语。材料二
现代教学是如何关注学生个性发展的?
发展社会主义民主,最根本的是要()。
国家将个人所得税起征点由2000元上调至3500元,其他条件不变,下列说法中正确的是()。
下列材料是某老师的一节思想品德课的课堂实录片段。课题:追寻高雅生活教学实录课学导入.播放电平相册《我们和我们的老师们》教学过程:(一)活动一:笑看人生播放关于杨光的视频材料。教师:你觉得
人们在生产生活中离不开计时,而要做到准确方便计时却不是一件容易的事。从“历象日月星辰,敬授人时”到“立杆测影,划分一日”,从“滴漏计时”到机械钟,从石英钟到原子钟……人类对时间计量技术和方法的探索历程表明()。①主客观条件的限制决定了追求真理
习近平总书记曾在北京文艺工作座谈会上指出,文艺创作不能在市场经济中迷失方向,文艺创作不要沾上铜臭味。一些文艺创作沾上铜臭味表明()。
下列框图反应了三角函数与其他学科内容之间的关系,请用恰当词语补充完整。
已知向量a,b,满足|a|=|b|=1,且|a—kb|=|ka+b|,其中k>0。(1)试用k表示a.b,并求出a.b的最大值及此时a与b的夹角θ的值;(2)当a.b取得最大值时,求实数λ,使|a+λb|的值最小,并对这一结论作出几何解
已知直线ι:ax+y=1在矩阵对应的变换作用下变为直线ι′:x+by=1。(1)求实数a,b的值;(2)若点P(x0,y0)在直线ι上,且,求点P的坐标。
随机试题
发病一个半小时后的脑出血发病2周后的脑出血
一患儿发热3天后出皮疹,皮疹位于颈部、面部、躯干、四肢、手心、足心,体温不退。该病常见并发症不包括
依照我国刑事诉讼法的规定,公安机关对于已经超过追诉时效期限的案件:()
到2010年,我国城市节水的目标是南方沿海缺水城市达到()。
铁路工程招标中,下列属于标段划分原则的有()。
针对某种具体的物价与工资形势,由政府出面施加压力来扭转局势的收入政策是( )。
()是指以期限在一年以下的金融资产为交易标的物的短期金融市场。
对于大众来说,科学无处不在,它完全可以成为社会流行文化的一部分,享受科学文化知识就像看书、读报、听音乐、看电影一样。近日,由中国科协主办的“典赞·2016科普中国”活动揭晓了2016年度十大“科学”流言终结榜,同时揭晓的还有年度十大科学传播事件
下列不属于“三通”的是()。
某中学发现有学生课余用扑克玩带有赌博性质的游戏,因此规定学生不得带扑克进入学校,不过即使是硬币,也可以用作赌具,但禁止学生带硬币进入学校是不可思议的,因此,禁止学生带扑克进学校是荒谬的。以下哪项如果为真,最能削弱上述论证?
最新回复
(
0
)