首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量. 求|A*+3E|.
设方程组 为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量. 求|A*+3E|.
admin
2018-05-21
76
问题
设方程组
为矩阵A的分别属于特征值λ
1
=1,λ
2
=-2,λ
3
=-1的特征向量.
求|A
*
+3E|.
选项
答案
|A|=2,A
*
对应的特征值为|A|/λ
1
,|A|/λ
2
,|A|/λ
3
,即2,-1,-2,A
*
+3E对应的特征值为5,2,1,所以|A
*
+3E|=10.
解析
转载请注明原文地址:https://kaotiyun.com/show/TKr4777K
0
考研数学一
相关试题推荐
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt.(1)证明F’(x)单调增加.(2)当x取何值时,F(x)取最小值.(3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f"(x0)≠0,证明当f"(x0)>0,f(x)在x0处取得极小值.
设L是圆周x2+y2=1,n为L的外法线向量,u(x,y)=等于()
设函数f(x)在R上具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,起点为(a,b),终点为(c,d).记(1)证明曲线积分I与路径L无关.(2)当ab=cd时,求I的值.
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设A是n阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
随机试题
以下选项中属于川端康成作品的有()
在公司进行清算期间,可以对直接负责的董事、监事、高级管理人员采取通知出境管理机关依法阻止其出境,并申请司法机关禁止其转移、转让或者以其他方式处分财产,或者在财产上设定其他权利措施的,包括下列公司中的:()
关于稳定型心绞痛的发病机制,下列哪一种提法正确
结肠癌经淋巴道转移最先至
引起抗生素相关性假膜性肠炎最可能的细菌是
A.草酸盐结晶B.脂肪醇结晶D.胆红素结晶C.尿酸盐结晶E.酪氨酸结晶黄疸患者尿沉渣可见()
以下属于建构主义教学思想的是()
用多种形式把所有权和()分开,以调动企业积极性,是改革的一个很重要的方面。
逢年过节看望慰问贫困群众,这是一项优良传统。然而岐山县蒲村镇鲁家庄村一位残疾老人,却遭遇到一件令人啼笑皆非的事情。这位卧床多年的残疾爷爷,家人到镇政府领回的过冬慰问福利竟然是一条超短裙和紧身超短裤,别说老人无法穿,就是村里喜欢时尚的年轻人,恐怕也不便穿着。
ChooseTWOletters,A-E.JuliaandBobfindsomeoftheitemstheyneedA.inBob’spencilcaseandtherecyclingbin.
最新回复
(
0
)