首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
admin
2016-09-13
76
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sinxdx>0或∫
0
π
f(x)sinxdx<0,与题设矛盾.所以f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sinxdx=0矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x-x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x-x
0
)dx=∫
0
π
f(x)(sinxcosx
0
-cosxsinx
0
)dx =cosx
0
∫
0
π
f(x)sinxdx-sinx
0
∫
0
π
f(x)cosxdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得fˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
[*]
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
用比较审敛法判别下列级数的收敛性:
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,则丨aE-An丨=___________.
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设判断f(x)在(一∞,1]是否有界,并说明理由.
随机试题
压力变送器是根据力平衡原理来测量的。
寒、热、痰、湿、瘀、郁,犯及冲任导致冲任阻滞,治宜疏通冲任,代表方有
对重度休克病人纠正代谢性酸中毒时,下列哪项不宜使用:
钢筋混凝土水处理构筑物的浇筑层高度一般为振捣器作用部分长度的1.25倍,最大不超过()mm。
“备案号”栏应填:“原产国”栏应填:
费率是指利率以外的银行提供信贷服务的价格,一般以信贷产品金额为基数,按一定比率计算。()(2010年上半年)
法是一种社会规范,同道德规范、职业规范相比,具有以下特点()。
班主任对一个班集体的发展起()。
下列VisualBasic变量名中,正确的是()。
描述计算机内存容量的参数,正确的是()。
最新回复
(
0
)