已知函数若对任意x∈[1—2a,2a一1],不等式f[a(x+1)-x]≥f(x)]a恒成立,则实数a的取值范围是______。

admin2017-12-17  7

问题 已知函数若对任意x∈[1—2a,2a一1],不等式f[a(x+1)-x]≥f(x)]a恒成立,则实数a的取值范围是______。

选项

答案[*]

解析 易知f(x)在定义域内单调递增,且[f(x)]a=f(ax),则原不等式转化为a(x+1)-x≥ax,得x≤a。由于不等式对于定义域内任意a恒成立,2a一1≤a,加之1—2a≤2a—1,联立解得
转载请注明原文地址:https://kaotiyun.com/show/TSIq777K
0

相关试题推荐
最新回复(0)