首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形; (2)|E+A+A2+…+An|的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形; (2)|E+A+A2+…+An|的值.
admin
2016-09-30
53
问题
设n阶实对称矩阵A的秩为r,且满足A
2
=A(A称为幂等阵).
求:(1)二次型X
T
AX的标准形; (2)|E+A+A
2
+…+A
n
|的值.
选项
答案
(1)因为A
2
=A,所以|A||E一A|=0,即A的特征值为0或者1,因为A为实对称矩阵,所以A可对角化,由r(A)=r得A的特征值为λ=1(r重),λ=0(n一r重),则二次型X
T
AX的标准形为y
1
2
+y
2
2
+…+y
r
2
. (2)令B=E+A+A
2
+…+A
n
,则B的特征值为λ=n+1(r重),λ=1(n一r重),故 |E+A+A
2
+…+A
n
|=|B|=(n+1)
r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tdw4777K
0
考研数学一
相关试题推荐
设A是3阶实对称阵,有特征值λ=3,对应的特征向量为考ξ=[1,2,3]T,则二次型在特征向量ξ=[1,2,3]T处的值
确定常数a与b的值,使得
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量.证明P为可逆矩阵;
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2ax1x3+2ax2x3经可逆性变换得g(y1,y2,y3)=y12+y22+4y32+2y1y2.求可逆矩阵P.
已知函数f(x)连续,且=1,g(x)=∫01f(xt)dt,求g’(x),并证明g’(x)在x=0处连续.
设矩阵,且方程组Ax=β无解.求a的值;
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),则f=(x1,x2,x3)在正交变换x=Qy下的标准形为().
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
随机试题
A.由纤维组织及内皮细胞修复B.由周围的腺上皮细胞修复C.由肉芽组织及周围腺上皮细胞修复D.由周围的鳞状上皮细胞修复胃溃疡愈合
可摘局部义齿人工后牙颊舌径宽度小于天然牙的目的是
城市化水平与经济发展关系的曲线表明,经济发展的前期阶段人均GNP增加一定数量(如100美元),需要相应提高的城镇人口比重的幅度应该()。
原材料账户期初余额为50万元,本期购进原材料30万元,生产领用原材料40万元,则期末账户上的原材料为()万元。
在归整或保存审计工作底稿时,下列表述中正确的是()。
运动负荷就是负荷量,它是由时间、数量和距离组成的。()
某居民违章搭建,严重影响市容。执法人员对他说:“如果你不在规定期限内自行拆除。那么,我们将依法强拆。”该居民回答:“我坚决不同意。”按照居民的说法,下列哪项判断是他同意的?()
私自拆阅邮件或窃听公民电话等通讯内容的行为是侵犯公民()的行为。
马克思主义唯物史观产生前,唯心史观长期占统治地位的根源在于()。
WhathelpsmaketheMiddleAtlanticStatesamajorcenterofinternationaltrade?
最新回复
(
0
)