首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2019-05-11
80
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*] 若x
1
=x
1
,令x=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
] [*] (a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
) [*] (a,b),有F’’(x)=0,即f’’(ξ)=g’’(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/TwV4777K
0
考研数学二
相关试题推荐
设f(χ)=,求df(χ)|χ=1.
设函数f(χ)在|χ|<δ内有定义且|f(χ)|≤χ2,则f(χ)在χ=0处().
[*]
设A为四阶矩阵,|A*|=8,则|-3A*|=_______.
计算I=y2dσ,其中D由χ=-2,y=2,χ轴及曲线χ=-围成.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P-1AP=B.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设函数f(x)在x=0可导,且f(0)=1,f’(0)=3,则数列极限____________.
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限。
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)