首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2019-05-11
106
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*] 若x
1
=x
1
,令x=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
] [*] (a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
) [*] (a,b),有F’’(x)=0,即f’’(ξ)=g’’(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/TwV4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2-3α3,α3+2α1|=_______.
[*]
求极限
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
设方程组有无穷多解,矩阵A的特征值为λ1=1,λ2=-1,λ3=0,其对应的特征向量为(Ⅰ)求A;(Ⅱ)求(A+E)X=0的通解.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
随机试题
精车曲轴一般遵守先精车影响曲轴变形最小的轴颈,后精车在加工中最容易引起变形的轴颈的原则。()
凡士林灭菌方法,应采用
A.IgGB.干扰素C.趋化因子D.白介素-2E.分泌型IgA动物机体在抗病毒感染免疫中,在消化道、呼吸道黏膜免疫中起主要作用的免疫分子是()
精气神明衰惫之象为心肺宗气将衰惫之象为
以下情况中,不属透托法适应证的是
中水管道上不得装设()。
某工程包括A、B、C三项分项工程,合同工期为6个月。工期每提前一个月奖励1.5万元,每拖后一个月罚款2万元。各分项工程的计划进度与实际进度见表5.1。表中粗实线表示计划进度,进度线上方的数据为每月计划完成工程量(单位:100m3);粗虚线表示实际进度,进度
注册会计师的下列行为应被确定为推定欺诈的是()。
长虹彩电公司提出“产业报国,以民族昌盛为己任”的口号被全国各大报纸争相报道,这属于促销组合构成要素中的()。
A、Toexplainwhypeoplefailtoactinemergencies.B、Toexplainwhenpeoplewillactinemergencies.C、Toexplainwhatpeoplew
最新回复
(
0
)