首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
admin
2018-06-14
36
问题
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce
-∫p(x)dx
是方程y’+p(x)y=0的所有解.
选项
答案
因为对任意常数C,y=Ce
-∫p(x)dx
是原方程的解,又设y是原方程的任意一个解,则 [ye
∫p(x)dx
]’=e
∫p(x)dx
[y’+p(x)y]=0, 即存在常数C,使得ye
-∫p(x)dx
=C,故y=Ce
-∫p(x)dx
.
解析
转载请注明原文地址:https://kaotiyun.com/show/UBW4777K
0
考研数学三
相关试题推荐
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知A,B是三阶方阵,A≠O,AB=O.证明:B不可逆.
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使为μ2的无偏估计.
设A是n阶矩阵,|A|=0,A11≠0,则A*X=0的通解是________.
求微分方程y"+4y’+4y=0的通解.
设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y"一6y’+9y=e3x,则y(x)=________.
设f(x)具有连续导数,且F(x)=(x2-t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=_______.
设y=y(x)在[0,+∞)内可导,且在处的增量△y=y(x+△x)-y(x)满足其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
设一曲线过点(e,1),且在此曲线上任意一点M(x,y)处的法线斜率为,求此曲线方程.
随机试题
A.消风散B.越鞠丸C.杏苏散D.痛泻要方属于和法的方剂是
患者,女性,产后,右乳房红肿疼痛,超声见回声不均匀,低回声肉见点状回声流动。如图所示考虑为
按部位痞满可以分为
脑卒中偏瘫患者上肢出现屈肌协同运动,最不可能出现的是
具有温中降逆、温肾助阳作用的药物是具有散寒止痛、温肺化饮作用的药物是
在Word中设置字号时,选择的中文字号越小,设置的字符越小。()
企业实施清洁生产的途径有()。
2017年7月10日,甲公司与A银行签订借款合同,约定:借款金额550万,年利率6.5%;借款期限1年。同日,甲公司将其一宗土地的建设用地使用权抵押给A银行,双方签订了书面抵押合同,并于7月11日办理了抵押登记。A银行还要求甲公司提供其他担保,于是甲公司请
关于信息资源管理描述正确的是()。
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
最新回复
(
0
)