首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式 f(x)=C0xn—1+C1xn—2+…+Cn—1,使得f(ai)=bi(i=1,2,…,n).
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式 f(x)=C0xn—1+C1xn—2+…+Cn—1,使得f(ai)=bi(i=1,2,…,n).
admin
2017-07-26
80
问题
设a
1
,a
2
,…,a
n
是n个互不相同的数,b
1
,b
2
,…,b
n
是任意一组给定的数,证明:存在唯一的多项式
f(x)=C
0
x
n—1
+C
1
x
n—2
+…+C
n—1
,使得f(a
i
)=b
i
(i=1,2,…,n).
选项
答案
设f(x)=C
0
x
n—1
+C
1
x
n—2
+…+C
n—1
即是该多项式,则有 [*] 上述非齐次线方程组因为其系数行列式为n阶范德蒙行列式,又因a
1
,a
2
,…,a
n
互不相同,故D
n
=V
n
≠0,由克莱姆法则知方程组存在唯一解(C
0
,C
1
,C
n—1
),故存在唯一的多项式f(x),使得f(a
i
)=b
i
(i=1,2,…,n).
解析
转载请注明原文地址:https://kaotiyun.com/show/UrH4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
袋中有2个白球和1个红球.现从袋中任取一球且不放回,并再放入一个白球,这样一直进行下去,则第n次取到白球的概率为
12个乒乓球中有9个新球,3个旧球.第一次比赛,取出3个球,用完以后放回去,第二次比赛又从中取出3个球.(1)求第二次取出的3个球中有2个新球的概率;(2)若第二次取出的3个球中有2个新球,求第一次取到的3个球中恰有1个新球的概率.
利用第二类曲线积分,求下列曲线所围成的图形的面积:(1)星形线x=acos3t,y=asin3t;(2)曲线x=cost,y=sin3t.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
随机试题
进入21世纪,控制性详细规划在一些特大城市出现了新的编制方法与编制思路,主要体现在()。
缺口分析和久期分析采用的都是()敏感性分析方法。
下列数据整理和显示方法中,取值不可能大于1的是()。
Honesty,mymumalwaysusedtotellme,isthebestpolicy.Ofcourse,thisdidn’tincludeherwhenshetoldmethatifIdidn’
在美术教育史上第一个“发现了儿童绘画”的是()。
使有效的教材发挥功效的最直接环节是()。
(单选题)生产无限扩大的趋势与劳动者有支付能力的需求相对缩小的矛盾,以及企业生产的有组织性与社会生产的无政府状态的矛盾,都是()基本矛盾的主要表现。
目前教育体制的功能在很大程度上采用“教育抽水机理论”。也就是将高素质的农村劳动者从农村抽吸到城市,将本来可能会有利于农村经济发展的潜在人力资本变成了仅有利于城市经济发展的人力资本。但华西村做法却恰恰相反,它把人才从城市抽吸到华西村发展。有人说,华西村本身就
19世纪末,促进亚洲和非洲民族解放运动高涨的相同因素是()。
A、Hewillworkinhishometown.B、Hehasjustgraduatedfromcollege.C、Heisstudyinginhishometown.D、Heteachesinacolleg
最新回复
(
0
)