首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2019-03-14
47
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得
c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0,
用A左乘等式两边,得
c
1
Aα
1
+c
2
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.
但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关
r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/UsV4777K
0
考研数学二
相关试题推荐
设证明f(x)是以,π为周期的周期函数;
设矩阵,当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(A)g(1)。
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明
与矩阵可交换的矩阵为____________。
设(1,1,1)T,(2,2,3)T均为线性方程组的解向量,则该线性方程组的通解为___________。
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则()
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设φ(x)连续,且φ(x)+∫0x(x一u)φ(u)du=ex+2x∫01φ(xu)du试求φ(x).
设f(χ)在χ=a的邻域内二阶可导且f′(a)≠0,则=_______.
随机试题
交通信号包括交通信号灯、交通标志、交通标线和交通警察的指挥。
实行何种所有制结构,是由
《冯谖客孟尝君》选自《________________》。
诊断代谢性酸中毒的主要依据为
脊柱裂时常合并的颅脑异常,下列描述不正确的是
一般来说,儿童身高增长最快的时期是()
水泥稳定粒料基层实测项目中不包含()。
单元组合式现浇钢筋混凝土水池工艺流程中,池壁分块浇筑的前一项施工项目是()
刘某担任省重点科技攻关项目负责人,工作任务尚未完成,不得提出解除聘用合同。()
•YouwillhearpartofaninterviewbetweenthecommercialdirectorofapapercompanycalledSCAandShubhaMadhukar,theinter
最新回复
(
0
)