首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2019-03-14
31
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得
c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0,
用A左乘等式两边,得
c
1
Aα
1
+c
2
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.
但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关
r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/UsV4777K
0
考研数学二
相关试题推荐
设,则()
设α,β均为三维列向量,βT是β的转置矩阵,如果则αTβ=_________。
设矩阵三阶矩阵B满足ABA*=E—BA一1,试计算行列式|B|。
设A=(α1,α2,α3)是三阶矩阵,且|A|=4。若B=(α1一3α2+2α3,α2一2α3,2α2+α3),则|B|=__________。
设A=(α1,α2,α3)是三阶矩阵,则|A|=()
设数列{xn}收敛,则()
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃.
设a1=1,an+1+=0,证明:数列{an}收敛,并求.
设函数f(χ)在χ=1的某邻域内有定义,且满足|f(χ)-2eχ|≤(χ-1)2,研究函数f(χ)在χ=1处的可导性.
随机试题
containexplainhurlentertainconceivenorintheuniverseimprisonresultkidnapmytholo
本票基本关系中,当事人为()
目前有三种基本的备份系统:简单的网络备份系统、()和()。
全胃切除术预计可导致下列问题()(1992年)
背景A公司承包某超高层建筑机电工程施工项目.该工程位于市中心繁华区,工程范围包括通风与空调,给排水及消防水,动力照明,环境与设备监控系统等,建设单位要求A公司严格实施绿色施工,严格安全和质量管理。A公司项目部针对工程情况,制定了绿色施工管理和环
年距发展速度是()。
Motherhoodmaymakewomensmarterandmayhelppreventdementia(痴呆)inoldagebybathingthebraininprotectivehormones(荷尔蒙),u
【2013年山东省属真题】信息加工理论对实际教学的启示是()。
下列各句中有语病的是()。
Somepeoplethinkschoolsshouldonlyteachstudentsacademicsubjects.Othersthinkschoolsshouldalsoteachstudentshowtod
最新回复
(
0
)