首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
admin
2017-01-13
65
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
选项
答案
本题可转化为证明x
0
f(x
0
)=∫
0
1
f(x)x。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
0
1
f(t)dt=0。也就是 x
0
f(x
0
)=∫
0
1
f(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/3xt4777K
0
考研数学二
相关试题推荐
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy-y=0和ex-xz=0所确定,求.
设当x∈[2,4]时,有不等式ax+b≥lnx,其中a,b为常数,试求使得积分I=∫24(ax+b-lnx)dx取得最小值的a和b。
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2),其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在点ξ,使得.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
下列等式正确的是[].
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
随机试题
深昏迷病人不能将痰液咳出的主要原因是
流行病学研究发现:饮酒与冠心病和糖尿病都有关联。对冠心病RR为6.0,AR为5%;对糖尿病RR为3.0,AR为20%。据此,可以得出如下结论
图5-64所示正方形截面等直杆,抗弯截面为W,在危险截面上,弯矩为M,扭矩为Mn,A点处有最大正应力σ和最大切应力τ。若材料为低碳钢,则其强度条件为()。
1992年首次召开的“可持续发展问题世界首脑会议”,制定并通过()和《里约宣言》,正式提出了可持续发展战略。
在每一年度终了后(),省级安全生产监督管理部门及同级财政部门要将上年度本地区风险抵押金存储、使用、管理等有关情况报国家安全生产监督管理总局及财政部。
根据税收和税法的概念,下列表述正确的是()。
承担违反合同民事责任的形式有()。
某大学的一项最新研究指出:“经常吃火龙果对小学生的智力发育有益。”研究人员对320名小学生进行调查,发现那些经常吃火龙果的小学生,其智力水平较很少吃火龙果的小学生要高。因此,研究人员发现了火龙果与小学生智力发育之间的联系。以下哪项如果为真,最能支持上述论证
在Excel的A1单元格中输入公式“=MIN(SUM(5,4),AVERAGE(5,11,8))”,按回车键后,A1单元格中显示的值为_________。
以下程序执行后的输出结果是【】。#include<iostream.h>main(){inti,m=0,n=0,k=0;for(i=9;i<=11;i++)switch(i/10){case0:m++;n++;break
最新回复
(
0
)