首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
admin
2017-01-13
51
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
选项
答案
本题可转化为证明x
0
f(x
0
)=∫
0
1
f(x)x。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
0
1
f(t)dt=0。也就是 x
0
f(x
0
)=∫
0
1
f(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/3xt4777K
0
考研数学二
相关试题推荐
设当x→0时,有ax3+bx2+cx~∫0ln(1+2x)sintdt,则().
设函数z=f(x)在点(1,1)处可微,且f(1,1)=1,,ψ(x)=f(x,f(x,x)),求ψ3(x)|x=1。
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设,其中n≥1,证明:
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
随机试题
牛头刨床加工表面粗糙度值增大,其中的原因之一就是:床身导轨磨损。()
按照控制对象的范围,控制可以分为【】
含有碧玉散的方剂是( )
不属于颈椎病的临床表现的是
某商品房现在购买需花50万元,6年末售后可得100万元,若将购买商品房看作是按复利向银行存款,那么相当于银行存款的利率是()。
业主方进度控制的任务是控制整个项目实施阶段的进度,包括控制()。
采购活动记录应当包括的内容有()。
贷记卡透支按月计收单利,准贷记卡透支按月计收复利。
大额可转让定期存单的特点是不记名;金额较大;利率有固定的,也有浮动的,一般比同期限的定期存款的利率高;不能提前提取,也不能在二级市场上流通转让。()
Mondayisthebeginningoftheworkweek;it’s【C1】______daymostpeoplelike【C2】______.It’snot【C3】______thatthedaytheyli
最新回复
(
0
)