首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
admin
2014-01-26
98
问题
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
0
)=0.
选项
答案
[详解1] 令F(x)=∫
0
x
f(t)dt,则有F(0)=F(π)=0.又因为 0=∫
0
π
f(x)cosxdx =∫
0
π
F(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinsxdx =∫
0
π
F(x)sinxdx 令G(x)=∫
0
x
F(t)sintdt,则G(0)=G(π)=0,于是,对G(x)在[0,π]上使用拉格朗日中值定理知,存在ξ∈(0,π),使F(ξ)sinξ=0. 因为当∈E(0,π),sinξ≠0,所以有F(ξ)=0.这样就证明了 F(0)-F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,知至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0, 即 f(ξ
1
)=f(ξ
2
)=0. [详解2] 反证法:令F(x)=∫
0
x
f(t)dt.则有F(0)=F(π)-0.由罗尔定理知,存在ξ
1
∈(0,π),使F’(ξ
1
)=f(ξ)=0. 假设在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由∫
0
π
f(x)dx=0可知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x>0,在(ξ
1
,π)内f(x)<0.于是再由∫
0
π
f(x)dx=0 与∫
0
π
f(x)cosxdx及cosx盯在[0,π]上的单调性知: 与∫
0
π
f(x)cosxdx及cosx盯在[0,π]上的单调性知: 0=∫
0
π
f(x)(cosx-cosξ
1
)dx =∫
0
ξ
1
f(x)(cosx—cosξ
1
)dx+∫
ξ
1
π
f(x)(cosx-cosξ
1
)dx>0, 矛盾.从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一个实根ξ
2
,故知存在实根ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
解析
[分析] 本题直接用连续函数的介值定理是困难的,可考虑作辅助函数F(x)= ∫
0
x
f(t)dt,显然有F(0)=F(π)=0,但要最终证明结论,还需另找F(x)的一个零点,这当然要由第二个条件∫
0
π
f(x)cosxdx=0来实现.为了使其与F(x)联系起来,可将其变换为
0=∫
0
π
f(x)cosxdx=∫
0
π
F(x),再通过分部积分和微分中值定理或积分巾值定理就可达到目的.
[评注1] 证明f(x)有是个零点的一个有效的方法是证明它的原函数有k+1个零点.F(x)=∫
0
x
f(t)dt是多次考到的一个特殊的原函数,应当引起注意.
[评注2] 详解1中的ξ和详解2中的ξ
1
均可由积分中值定理得到,请读者自己思考.
积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ξ∈(a,b),使
∫
a
b
f(x)dx=f(ξ)(b-a).
[评注3] 证明介值问题,一般有两种情形:
1.要证的结论与某函数在某一点的函数值f(ξ)有关,但与其导数值无关,可考虑用连续函数的介值定理;
2.要证的结论与某函数在某一的导数值f’(ξ)(或更高阶导数值)有关,则应考虑用微分中值定理(包括罗尔定理、拉格朗日中值定理和泰勒公式).
但是根据(∫
a
x
f(t)dt)’=f(x)知,若要证的结论与导数无关,用连续函数的介值定理又解决不了时,也可考虑用上述变限的定积分所构造的辅助函数,通过微分中值定理进行证明.这是一个例外的隐含情形,应当引起注意.
转载请注明原文地址:https://kaotiyun.com/show/VQ34777K
0
考研数学二
相关试题推荐
(87年)设y=sinχ,0≤χ≤,问t为何值时,图2.4中阴影部分的面积S1与S2之和S最小?最大?
玻璃杯成箱出售,每箱20只.设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1.一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买此箱玻璃杯的概率;(
(10年)求函数u=χy+2yz在约束条件χ2+y2+z2=10下的最大值和最小值.
(09年)设某产品的需求函数为Q=Q(p),其对价格P的弹性εp=0.2,则当需求量为10000件时,价格增加1元会使产品收益增加_______.
设t>0,则当t→0时,f(t)=[1-cos(X2+y2)]dxdy是t的n阶无穷小量,则n为()。
求极限
求极限
函数f(x)=∫xx+2πesintsintdt的值().
计算e2x(tanx+1)2dx.
设F(x)=∫xx+2πesintsintdt,则F(x)().
随机试题
财务杠杆系数是指()变动率与息税前利润变动率的比值。
A、HCO3-相对增多B、HCO3-相对减少C、H3CO3相对增多D、H2CO2相对减少E、HCO3-、H2CO3均无变化代谢性酸中毒时()
易合并出血的消化性溃疡包括
患儿,男,4个月,生后1个月起患过败血症,腹泻常有鹅口疮,本次因肺炎入院,本患儿下列哪项护理不正确
病人诉复视,体检见右眼内斜,不能向外侧转动。其病变部位可能在
A.执业药师应履行的职责B.对执业药师继续教育的要求C.执业药师再注册的规定D.执业药师注册的规定按照《执业药师资格制度暂行规定》对违反《中华人民共和国药品管理法》及有关法规的行为或决定,提出劝告、制止、拒绝执行并向上级报告,是(
学习的熟练程度达到______%时,记忆效果最好。
一棵树上的苹果熟了。因为太高,踮起脚都够不着,只好搬来木梯,就在我伸手欲摘的一瞬,苹果突然落了下来,摔在地上,成了一团果泥。这便是生活中所谓的无奈——眼看到手,却又失去。但不算白费力,至少,我知道了这只苹果不属于我。如果这时从木梯上下来,再去摘其他树上的也
分配学生座位时,教师最值得关心的是()。
Thearmor,infantryand(othermilitaryforces)(wereheldup)by(theenemycounterattack),thus(caused)thedelayintheadv
最新回复
(
0
)