[2005年] 设二维随机变量(X,Y)的概率密度为 求 Z=2X-y的概率密度fZ(z);

admin2019-05-11  30

问题 [2005年]  设二维随机变量(X,Y)的概率密度为
         

Z=2X-y的概率密度fZ(z);

选项

答案解一 Z的分布函数为 [*] 注意到2x-y=z与z轴的交点为z/2.区域G={(x,y)|2x-y≤z}与f(x,y)的非零值的区域D相交的情况可由点z/2的位置确定. ①当z/2<0时,区域G={(x,y)|2x-y≤z}在直线2x—y=z的上方它与D不相交(见图3.3.3.5(a)).故 [*] 从而 fZ(z)=FZ’(z)=0. ②当0≤z/2<1即0≤z<2时,区域G为直线2x-y=z的上方,它与D相交(见图3.3.3.5(b)),其相交部分的面积可由D的面积1减去小三角形面积[(2-z)(1-z/2)]/2,得到,即 [*] 当0≤z/2≤1即0≤z≤2时(见图3.3.3.5(b)),也可用二重积分求出FZ(z).事实上,有 [*] 故fZ(z)=FZ’(z)=1-z/2. ③当z/2≥1时(见图3.3.3.5(c))区域G:2x-y≤z与D的交集为D,因而 [*] 故 fZ(z)=FZ’(z)=0. 综上所述,得到 [*] 解二 用卷积公式(3.3.3.1)求之,即 [*] 因f(x,y)取非零值的区域边界与坐标轴的交点为(0,0),(1,0),(1,2).将这些坐标值分别代入z=2x-y中得到z=0,2.于是分z<0,0≤z<2,z≥2三种情况讨论.因y=2x-z,故 [*] 因而当z<0或z≥2时,fZ(z)=0.当0≤z<2时,由图3.3.3.5(d)得到 [*] 综上所述,Z的概率密度函数为 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/VbJ4777K
0

随机试题
最新回复(0)