首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
admin
2018-09-25
46
问题
已知二次曲面方程
x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4
可以经过正交变换
化为椭圆柱面方程η
2
+4ξ
2
=4,求a,b的值和正交矩阵P.
选项
答案
二次型的矩阵 [*] 其特征值λ
1
=0,λ
2
=1,λ
3
=4. 由 [*] 可知a=3,b=1. 属于λ
1
=0的单位化特征向量p
1
= [*] 属于λ
2
=1的单位化特征向量p
2
= [*] 属于λ
3
=4的单位化特征向量p
3
= [*] 则所求正交矩阵P=[p
1
,p
2
,p
3
].
解析
转载请注明原文地址:https://kaotiyun.com/show/Veg4777K
0
考研数学一
相关试题推荐
设A,B,C是n阶矩阵,且ABC=E,则必有
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
证明D==(x1+x2+x3)(xi-xj).
已知f(x)=,证明f′(x)=0有小于1的正根.
设f(x)在[0,b]可导,f′(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
随机试题
简述辛亥革命以后,南京临时政府对文书工作进行的改革。
市场需求预测的方法有:(1)__________。(2)__________。(3)__________。(4)__________。(5)__________。(6)__________。(7)__________。
交叉弹性可以是正值,也可以是负值。如为正值,则此两项产品为_________;相反,如果交叉弹性为负值,则此两项产品为互补品,也就是说,当产品Y的价格上涨时,产品X的需求量会下降。
直肠癌多见于()
下列主体中,应当向持票人承担票据责任的有()。
创新教育是以()为基本价值取向的教育。
关于《荷马史涛》的叙述不正确的是()。
下列不是实时操作系统的是()。
Marshaconfessedthatsheknewnothingofcomputer.
DoesthepublisherofDouglasStarr’sexcellentBlood—AnEpicHistoryofMedicineandCommerceactuallyexpecttosellmanycopi
最新回复
(
0
)