首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn—r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn—r线性无关。
admin
2018-12-29
74
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n—r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+ … +C
n—r
(η
*
+ξ
n—r
)=0, 即 (c
0
+c
1
+ … +c
n—r
)η
*
+c
1
ξ
1
+ … +c
n—r
ξ
n—r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+ … +c
n—r
)η
*
+c
1
ξ
1
+ … +c
n—r
ξ
n—r
] =(c
0
+c
1
… +c
n—r
)Aη
*
+c
1
Aξ
1
+ … +c
n—r
Aξ
n—r
=(c
0
+c
1
… +c
n—r
)b, 因为b≠0,故c
0
+c
1
+ … +c
n—r
=0,代入(2)式,有 c
1
ξ
0
+ … +c
n—r
ξ
n—r
=0, ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n—r
线性无关,因此c
1
=c
2
= … =c
n—r
=0,则c
0
=0,与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/WFM4777K
0
考研数学一
相关试题推荐
(99年)
(91年)已知当x→0时,与cosx一1是等价无穷小,则常数a=_______.
(08年)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
(00年)已知方程组无解,则a=______.
(97年)设则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
设Σ为平面z=2x+3y(x≥0,y≥0,x+y≤2),则曲面积分(x+y+z)dS=_________.
设离散型随机变量X可能的取值为x1=1,x2=2,x3=3,且E(X)=2.3,E(X2)=5.9,则取x1,x2,x3所对应的概率为()
曲面x2+2y2+3z2=21在点(1,一2,2)的法线方程为______.
坐标xOy平面上有一力场F,在点P(x,y)处力F(x,y)的大小为P点到原点O的距离,方向为P点矢径逆时针旋转要,求质点沿下列曲线由点A(a,0)移到点B(0,a)时力F所做的功W:(1)C1:圆周x2+y2=a2在第一象限内的弧.(
随机试题
从社会成员的参政倾向方面,政治文化可划分为_______与_______。
以下()是计算机程序设计语言所经历的主要阶段。
患者,男,18岁。突然出现无痛性腹泻,米泔水样便,量多,大便频繁,继之出现喷射状呕吐,呕吐物为米泔水样。查体:神志淡漠,声音嘶哑,眼窝深凹,口唇干燥。应首先考虑的是
下列有关胎盘屏障的叙述,错误的是()
脾经中用于治疗妇科疾病的常用穴位是
典型的结核病局部病变不表现为
国内常用的岩体结构分类法将岩体分为()等若干类结构形式。
检验人员凭施检部门的检验检疫、鉴定证稿(结果报告单)签发证单。( )
导游服务周期性长,导游可通过“日久见人心”的方式游客体会到自己的真情实意。()
下列关于我国学前教育的性质,描述不正确的是()
最新回复
(
0
)