首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
admin
2021-07-27
30
问题
设A为n阶正定矩阵,证明:
A
-1
仍为正定矩阵;
选项
答案
方法一 用合同法.依题设,已知A为n阶正定矩阵,因此必与单位矩阵合同。即存在可逆矩阵C,使得A=C
T
C,从而有A
-1
=C
-1
(C
T
)
-1
=C
-1
(C
-1
)
T
,知存在可逆矩阵Q=(C
-1
)
T
,使得A
-1
=Q
T
Q,因此,A
-1
仍为正定矩阵. 方法二 用特征值法.依题设,已知A为n阶正定矩阵,因此,A的全部特征值为正,即λ
i
>0(i=1,2,…,n),因为A
T
=A,则(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
为对称矩阵,又A
-1
的特征值为A的特征值的倒数,即为λ
i
-1
>0,从而知A
-1
的特征值全部为正,因此,A
-1
仍为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/WQy4777K
0
考研数学二
相关试题推荐
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
求微分方程y〞+y=χ2+3+cosχ的通解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
设A为m×n矩阵,且r(A)=m,则()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
问λ为何值时,线性方程组有解,并求出解的一般形式.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求正交变换x=Qy,将f化为标准形.
随机试题
用来显示报表中的字段名称或对记录的分组名称的是()
甲型肝炎病毒的特点是
请用标幺值进行图6-6中各短路点的短路参数计算。取SJ=100MV.A,已知各元件的电抗标幺值为=0.121,=0.333,=1.164,=0.1。d2点的短路容量S"为()。
除国务院另有规定者外,进口货物的进口关税和进口环节增值税可予以减免的,其进口环节消费税也同时予以减免。
货币市场的金融工具一般都具有的特点包括()。
RobertJ.OppenheimerwasafamousAmericanphysicist,whodirectedthedevelopmentofthefirstatomicbombs.Oppenheimerw
简述代理的法律特征
Onceenvironmentaldamage,ittakesmanyyearsforthesystemtorecover.
Thisproductisguaranteedfortwoyearsafterthedateofpurchaseagainstdefectsduetofaultyworkmanshipormaterials.The
WillWeRunOutofWater?Picturea"ghostship"sinkingintothesand,lefttorotondrylandbyarecedingsea.Thenimag
最新回复
(
0
)