首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2019-02-26
48
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解只要求出它的基础解系即可.而基础解系所含向量个数等于3一r(A),所以需要先确定A的秩r(A). 由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=2或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成。又因为[*]=0,所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(一b,a,0)
T
,η
2
=(一c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
本题综合考查矩阵秩的概念、齐次线性方程组基础解系的概念及求解方法.注意当r(A)=1时,A的极大无关行向量组只含1个向量,故此时方程组Ax=0可经消元法化为同解方程组ax
1
+bx
2
+cx
3
=0.
转载请注明原文地址:https://kaotiyun.com/show/WT04777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
利用变量替换u=x,,可将方程化成新方程()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
在以下的矩阵中,相似的矩阵为()其中a,b,c均非零.
双曲线绕z轴旋转而成的曲面的方程为()
设A为n阶方阵.证明:R(A*)=R(An+1)。
(2010年)设P为椭球面S:x2+y2+z2一yz=1上的动点,若S在点P的切平面与xOy面垂直,求P点的轨迹C并计算曲面积分其中∑是椭球面S位于曲线C上方的部分。
(2014年)设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f′(0)=0,求f(u)的表达式。
计算+(x2y—z3)dzdx+(2xy+y2z)dxdy,其中∑为半球面的内侧.
随机试题
仓库所配备的计量器具应经济合理、(),并保证其使用的准确性、可靠性和安全性。
小儿肥胖症的护理问题有()
某热处理工艺能够消除应力、细化组织、改善切削加工性能,且也可作为淬火前的预热处理和某些结构件的最终热处理,该工艺为()。
财务报表中的附注的作用有()。
甲公司拟投资进入飞机制造业。甲公司目前的产权比率为0.5,进入飞机制造业后仍维持该目标结构。在该目标资本结构下,税前债务资本成本为6%。飞机制造业的代表企业是乙公司,其资本结构为资产负债率50%,权益的B值为1.5。已知无风险利率为5%,市场风险溢价为3%
ABC会计事务所连续多年审计D集团财务报表。集团项目合伙人在考虑是否继续审计D集团2014年财务报表时,如果认为由于集团管理层施加的限制,使集团项目组不能获取充分、适当的审计证据,由此产生的影响可能导致对集团财务报表发表无法表示意见,集团项目合伙人应当采取
教室布置有哪几种方式?请简要叙述一下各自的特点。
××省人民政府:贵省《关于申请将××市列为国家历史文化名城的请示》(×××[2009]101号)收悉。现批复如下:一、同意将××省××市列为国家历史文化名城。××市历史悠久,地位独特,历史遗存丰富,城市传统格局保存较好,城市建设特色突出。二、贵省及
和表格相比,层的优势在于()。
A.enhanceB.equivalentC.idealD.probablyE.muchF.shortageG.certainlyH.calluponI.habituallyJ.callinK.
最新回复
(
0
)