首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
admin
2017-07-26
30
问题
设λ
1
,λ
2
是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ
1
的一个单位特征向量,求矩阵B=A—λ
1
αα
T
的两个特征值.
选项
答案
由于α是A的对应于特征值λ
1
的一个单位特征向量,于是有Aα=λ
1
α且α
T
α=1,从而 Bα=(A一λ
1
αα
T
)α=Aα—λ
1
αα
T
α=λ
1
α—λ
1
α=0=0.α,故0为B的一个特征值,且α为对应的特征向量. 设β为A的对应于特征值λ
2
的特征向量,则有Aβ=λ
2
β,由于实对称矩阵不同的特征值对应的特征向量正交,于是有α
T
β=0,从而 Bα=(A—λ
2
αα
T
)β=Aβ一λ
1
αα
T
β=λ
2
β一0=λ
2
β, 故λ
2
为B的一个特征值,且β为对应的特征向量.所以,B的特征值必有0和λ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/WgH4777K
0
考研数学三
相关试题推荐
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
已知边长为x=6m与y=8m的矩形,当-z边增加5cmI而y边减少10cm时,求这个矩形的对角线的长度变化的近似值.
设A为反对称矩阵,且|A|≠0,B可逆,A、B为同阶方阵,A为A的伴随矩阵,则[ATA(BT)-1]=().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设f(x)在[a,b]上连续且单调增加,试证:
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
随机试题
下列文学知识说法不正确的是()。
压力容器行业应用的主要工艺标准是JB4708《钢制压力容器焊接工艺评定》和()。
固定订货数量系统又称订货制或定量库存制。它是以__________为基础的库存管理制度。也就是说,在固定订货数量系统中,每次补充库存的订货数量是固定不变的。
关于局麻药的错误叙述是
A、条图B、圆图C、线图D、直方图E、散点图描述某年某地老年性痴呆患者的年龄分布情况,宜绘制
处置固定资产的现金流入,应该属于经营活动的现金流量。()
现代教师应具备的教师专业修养包括()
精神病人陈某发病上街打砸,严重危害他人人身安全,公安民警可以对其()。
仲裁:是指发生争议的当事人双方根据争议发生前或争议发生后的有关协议或有关规定,将该争议交付有一定社会威望、无直接利害关系的第三方居中评判是非,并承认其做出有约束力的明确双方权利义务的裁决的一种法律制度。根据定义,下列属于仲裁的是:
(2012年上海.B卷.109)下列有关文学常识的表述,正确的是()。
最新回复
(
0
)