首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
admin
2021-01-12
79
问题
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abe
η-ξ
=η
2
[f(η)一f’(η)].
选项
答案
令ψ(x)=e
-x
f(x),F(x)=[*],由柯西中值定理,存在η∈(a,b), 使得[*] 整理得[*] 由微分中值定理,存在ξ∈(a,b),使得[*] 所以abe
η-ξ
=η
2
[f(η)一f’(η)].
解析
转载请注明原文地址:https://kaotiyun.com/show/XJ84777K
0
考研数学二
相关试题推荐
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.(I)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=xe1—xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一)f(ξ)成立。
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
(1999年试题,八)设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f’’(ξ)=3.
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成平面图形绕x轴旋转一周的旋转体体积最小.
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明:数列{an}的极限存在.
(1995年)设y=eχ是微分方程χy′+p(χ)y=χ的一个解,求此微分方程满足条件y|χ=ln2=0。的特解.
已知函数y=y(x)满足微分方程x2+y2y’=1一y’,且y(2)=0,求y(x)的极大值与极小值.
[2017年]设函数f(x)在[0,1]上具有二阶导数,且f(1)>0,<0.方程f(x)f″(x)+[f′(x)]2=0,在(0,1)内至少有两个不同的实根.
随机试题
患者,女,23岁,未婚。近3个月,因大怒后,每逢月经期即出现鼻衄,量较多,色鲜红,经量明显减少,伴心烦易怒,口干口渴,胸胁胀痛,舌红,苔黄,脉弦数。治疗应首选
属于"水"的季是()属于"金"的季是()
荀子曰:“天有常道矣,地有常数矣,君子有常体矣。”下列诗句中与此寓意相近的是()。
随着我国对酒后驾驶惩处力度的加大,酒后代驾服务也应运而生。将“代驾”一词在网络中搜索不难发现,“代驾司机也酒驾”“代驾司机出交通事故”等事件也时有发生。对此,“公安在线”提醒大家,要选择正规的代驾公司,正规的代驾公司软件上会显示代驾人员的具体信息,更有保障
设x≥一1,求∫01x(1一|t|)dt.
A.autonomyB.bondsC.chronicD.correlatedE.detailF.integratedG.negativeH.optionsI.probab
VirtuallyallplantandanimalspeciesonEarthcanbefoundintropicalrainforests.Aswearestillignorantofmillionsofu
Therehadseemednoanyoftidingovertheeconomiccrisisintowhichwewerenow______.
Researchershaveidentified1.4millionanimalspeciessofar—andmillionsremaintobediscovered,named,andscientificallyde
A、Thereasonwhyearlymenweresointelligent.B、Thetoolsthatbelongedtoearlymen.C、Thelanguagedevelopmentofearlymen.
最新回复
(
0
)