首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
admin
2021-01-12
87
问题
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abe
η-ξ
=η
2
[f(η)一f’(η)].
选项
答案
令ψ(x)=e
-x
f(x),F(x)=[*],由柯西中值定理,存在η∈(a,b), 使得[*] 整理得[*] 由微分中值定理,存在ξ∈(a,b),使得[*] 所以abe
η-ξ
=η
2
[f(η)一f’(η)].
解析
转载请注明原文地址:https://kaotiyun.com/show/XJ84777K
0
考研数学二
相关试题推荐
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.(I)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=xe1—xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1一)f(ξ)成立。
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
(11年)(I)证明:对任意的正整数n,都有(Ⅱ)设an=(n=1,2,…)。证明数列{an}收敛.
[2005年]已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在ξ∈(0,1),使得f(ξ)=1一ξ;
(1995年)设y=eχ是微分方程χy′+p(χ)y=χ的一个解,求此微分方程满足条件y|χ=ln2=0。的特解.
已知函数y=y(x)满足微分方程x2+y2y’=1一y’,且y(2)=0,求y(x)的极大值与极小值.
[2017年]设函数f(x)在[0,1]上具有二阶导数,且f(1)>0,<0.方程f(x)f″(x)+[f′(x)]2=0,在(0,1)内至少有两个不同的实根.
随机试题
钢与混凝土组合梁设置连接件是为了______。
在工程施工技术管理资料中,工程竣工文件作为工程施工技术管理资料的一部分,应包括竣工报告、竣工验收证明书和()。
下列是有关仲裁与民事诉讼的表述,错误的有()。
小丽是一名初中生,因父亲酗酒、母亲改嫁而缺少照顾,常在网吧或娱乐场所流连,彻夜不归。下列为小丽提供的服务中,具有治疗性功能的是()。
填入下列句子中横线上词语,正确的一组是()。①相关部门多次派人来______这个公司的财务工作,发现了许多问题。②在我结婚的那天,妈妈拿出一个翡翠镯子给我,说那是祖上______下来的。
精索静脉曲张多见于左侧的原因,下列应除外的是
一位科学家说:“我们今天生活着的世界,与其说是自然世界,还不如说是人造或人为的世界。在我们的周围,几乎每样东西都刻有人的技能的痕迹。”这段话应理解为()
Withacandleinhand,hecarefully_____thenarrowstairstohisbedroom.
21STCENTURYCONSUMERHere’sastatisticalsnapshotoftheAmericanconsumer:Medianincome,at$40,816perhousehold,ismo
A.physicalB.adaptC.regulationD.taughtE.accuracyF.suitG.rousedH.requiredI.popularJ.heldK.spreadL.o
最新回复
(
0
)