首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数qn>0使得q(x)≥qn存存常数F>0使得|f(x)|≤F.求证:当x∈[a,b]时
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数qn>0使得q(x)≥qn存存常数F>0使得|f(x)|≤F.求证:当x∈[a,b]时
admin
2020-06-20
84
问题
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足
其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q
n
>0使得q(x)≥q
n
存存常数F>0使得|f(x)|≤F.求证:当x∈[a,b]时
选项
答案
由y(x)在[a,b]上连续知y(x)在[a,b]上取得它的最大值与最小值,即存在x
1
∈[a,b]使得y(x
1
)是y(x)在[a,b]上的最大值,又存在x
2
∈[a,b]使得y(x
2
)是y(x)在[a,b]上的最小值.无妨设最大值y(x
1
)>0,而最小值y(x
2
)<0.由于y(a)=y(b)=0,可见x
1
∈(a,b),x
2
∈(a,b).由极大值的必要条件可得y
’
(x
1
)=0,y
’’
(x
1
)≤0,从而在最大值点x=x
1
处有f(x
1
)=y
’’
(x
1
)+P(x
1
)y
’
(x
1
)一q(x
1
)y(x
1
)=y
’’
(x
1
)一q(x
1
)y(x
1
)[*]q(x
1
)y(x
1
)=y
’’
(x
1
)一f(x
1
)≤一f(x
1
)[*]类似由极小值的必要条件可得y
’
(x
2
)=0,y
’’
(x
2
)≥0,从而在最小值点x=x
2
处有f(x
2
)=y
’’
(x
2
)+P(x
2
)y
’
(x
2
)一q(x
2
)y(x
2
)=y
’’
(x
2
)一q(x
2
)y(x
2
)[*]q(x
2
)y(x
2
)=y
’’
(x
2
)一f(x
2
)≥一f(x
2
)[*]综合以上的讨论即得当x∈[a,b]时有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XLx4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,r(A)<n,则A必有特征值______,且其重数至少是________.
已知∫01f(tx)dt=+1,则f(x)=________.
设X的密度为f(χ)=e-|χ|,-∞<χ<+∞,则X的分布函数F(χ)=_______.
设总体X服从正态分布N(0,σ2),而X1,X2,…,X15是取自总体X的简单随机样本,则服从____________分布,分布参数为___________.
已知A,B,C都是行列式值为2的三阶矩阵,则=________。
[*]将分子化简后,应用等价无穷小因子代换。易知
设函数f(x)连续,则f(1)=_______.
设三阶实对称矩阵A的特征值为λ1=一l,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)内的连续性.
设f(x)=x3-3x+k只有一个零点,则k的范围是().
随机试题
有个班的同学去划船,他们算了一下,如果增加一条船,正好每条船可以坐8人;如果减少一条船,正好每条船可以坐12人,问这个班共有几名同学?()
压缩气体储存库与民用住宅之间的最小安全距离为50m,而与其他库房的最小安全距离为()。
郭沫若《炉中煤》写于()
血分实热证的临床表现有
关于我国宪法与一般法律的修改程序的区别,下列说法错误的是哪一项?()
锅炉容器内焊接时,照明电源电压不大于()V。
装卸搬运合理化的途径有()。
下列市场经济组织中,应对自身债务承担无限责任的是()。
某区政府领导拟将一长期亏损的国有副食冷库基地改造成一个副食品批发市场。为此进行了一系列前期准备,包括项目审批、征地拆迁、建筑规划设计等。不曾想,外地一开发商已在离此地不远的地方率先投资兴建了一个综合市场,而综合市场中就有一个相当规模的副食品批发场区,足以满
如果网络系统发送1bit数据所用时问为10-7S,那么它的数据传输速率为
最新回复
(
0
)