首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是 f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0. 且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是 f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0. 且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
admin
2016-09-13
58
问题
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是
f(a,b)=0,fˊ
x
(a,b)=0,fˊ
y
(a,b)≠0.
且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值,其中
选项
答案
本题是一道新颖的计算性证明题,考查抽象函数的极值判别和高阶偏导数计算,计算量大,难度不小. y=φ(x)在x=a处取得极值的必要条件是φˊ(a)=0.而 φˊ(x)=[*](fˊ
y
(x,y)≠0). 设b=φ(a),则f(a,b)=0,[*]=0. 于是fˊ
x
(a,b)=0,fˊ
y
(a,b)≠0.又 [*] 当[*]>0时,φˊˊ(a)<0,故b=φ(a)是极大值; 当[*]<0时,φˊˊ(a)>0,故b=φ(a)是极小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/XxT4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设,试用定义证明f(x,y)在点(0,0)处可微分.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
利用格林公式,计算下列第二类曲线积分:
求函数z=x4+y4-x2-2xy-y2的极值.
设函数f(u)在(0,∞)内具有二阶导数,且
如果函数f(x)当x→x。时极限为A,证明;并举例说明:如果当x→x。时|f(x)|有极限,f(x)未必有极限.
证明:存在的充分必要条件是f(x)在x。处的左、右极限都存在并且相等.
随机试题
法院受理了利捷公司的破产申请。管理人甲发现,利捷公司与翰扬公司之间的债权债务关系较为复杂。下列哪些说法是正确的?
按照不同的财富观对客户进行分类,下列哪项属于对挥霍者的描述?()
在美术课堂中,教师为同学们展示了某历史名画,引导同学们用美术术语来分析和描述绘画内容,并通过造型、表演等方式来表达自己对该作品的感受,这属于美术内容标准()模块的学习内容。[广东2020]
发生火灾后,拨打“119”电话报警时必须讲清的内容包括()。
建筑高度为21m的医疗建筑属于()。
口腔颌面部间隙感染易继发扁圆形骨髓炎的间隙有()、()和()。
(2004)为保持文物建筑的历史可读性和历史真实性,修复中任何增添部分都必须跟原有部分有所区别。这一原则是在以下哪项中确定的?
()是指财政部门代表国家对单位和单位中的相关人员的会计行为实施的监督检查,及对发现违法会计行为实施行政处罚,是一种外部监督。
2015年3月以来,某县公安局屡次接群众报警,称电动摩托车被盗。民警经大量梳理归纳.将其中10余起案件串并侦查发现,上述案件几乎都有“作案时间集中在下午1时至2时、晚6时至7时”“发案区域集中在县城周边”“嫌疑人戴一顶棒球帽,且途经摄像头时,有意低头或遮挡
不成文宪法国家的宪法形式有()。
最新回复
(
0
)